Return to search

Conception de biofilms bactériens artificiels électroactifs en vue d’optimiser les réactions de transferts extracellulaires d’électrons / Conception of an artificial electroactive biofilm in order to promote electron transfer reactions

Nous avons cherché dans ce travail à élaborer un biofilm artificiel électroactif dans le but de promouvoir les réactions de transfert extracellulaire d’électrons (EET) en reconstituant artificiellement un biofilm en présence de matériaux exogènes. Un matériau composite auto-assemblé constitué de cellules bactériennes (Shewanella oneidensis), de nanotubes de carbone et de cytochromes c exogènes (issue de cellules de cœur de bœuf) a été tout d’abord proposé. Le processus d’auto-assemblage a été étudié par diffusion de lumière dynamique, microscopie électronique à balayage et spectroscopie Raman. Ces analyses ont mis en évidence l’importance du cytochrome exogène dans l’assemblage et l’organisation du matériau. La viabilité bactérienne a été étudiée et l’activité métabolique a été caractérisée par électrochimie. Les courants à l’anode étaient 10 et 4 fois plus importants avec ce biofilm artificiel (0,027 A m-2) qu’avec les électrodes modifiées par les bactéries seules (0,003 A m-2) ou associées au cytochrome c (0,007 A m-2). Le biofilm artificiel a été testé en substituant S. oneidensis par Pseudomonas fluorescens, produisant un courant d’oxydation lors de l’ajout de 1,5 mM de glucose. Le cytochrome c possède, outre son rôle structurant, une activité de navette à électrons. Son potentiel redox, 254 mV (vs NHE), était adapté à l’oxydation du formiate mais inadapté à la réduction du fumarate. Pour cette raison, il a été substitué par d’autres cytochromes (c3DvH, c7Da, c553DvH, c3DdN ou c3Dg) possédant des potentiels redox plus bas, de 20 mV à -400 mV. Ces cytochromes variaient aussi au niveau de leur charge à pH neutre, permettant de valider l’importance des forces électrostatiques dans l’assemblage du biocomposite. Les résultats optimaux obtenus avec c3DvH et c7Da ont montré l’importance du potentiel redox des éléments exogènes pour l’EET. Nous avons ensuite remplacé le cytochrome c par la protamine. Cette protéine non électroactive a permis l’assemblage du biocomposite tout en maintenant les transferts directs d’électrons entre les bactéries et les différents nanomatériaux testés. Les optimisations ont permis d’atteindre des courants cathodiques de plus de 12 A m-2 en présence de 50 mM de fumarate. Les expériences de stabilité ont montré la présence d’un courant biotique de 1,75 A m-2 après 24 h de réduction de 50 mM de fumarate / The aim of this PhD work was to design an artificial electroactive biofilm in order to optimize extracellular electron transfers (EET) by artificially reconstituting the biofilm in the presence of exogenous materials. A biocomposite material was proposed from the self-assembly of the bacteria Shewanella oneidensis with carbon nanotubes and cytochrome c (extract from bovine heart). The self-assembly was first studied by diffusion light scattering, scanning electron microscopy and Raman spectroscopy. These analyzes showed the importance of the cytochrome c in the assembly and organization of the biocomposite. Bacterial viability was studied and metabolic activity was characterized with the help of electrochemistry. The current at the anode was 10 and 4 times higher with the artificial biofilm (0.027 A m2) than with film composed with bacteria alone (0.003 A m2) or associated with cytochrome c (0.007 A m2). Artificial biofilm was also tested with Pseudomonas fluorescens instead of S. oneidensis, producing an oxidative current upon the addition of 1.5 mM glucose. That indicates cytochrome c has, in addition to its structuring role, an electron shuttle activity. Its redox potential, +254 mV (vs. NHE), was adapted to the oxidation of formate but was unsuitable for the reduction of fumarate. For this reason, it has been substituted by other cytochromes, c3DvH, c7Da, c553DvH, c3DdN, and c3Dg, possessing lower redox potentials, in the range of 20 mV to -400 mV. These cytochromes also varied at the level of their charge at neutral pH and allowed to validate the importance of the electrostatic forces in the assembly of the biocomposite. The optimal results obtained with c3DvH and c7Da showed the importance of the redox potential of the exogenous elements for the EET. We then replaced the cytochrome c with protamine. This non-electroactive protein allowed the assembly of the biocomposite by promoting direct electrons transfer between the bacteria and the different nanomaterials tested. The optimizations made it possible to reach cathodic currents of more than 12 A m2 in the presence of 50 mM of fumarate. The stability experiments showed the presence of a biotic current of 1.75 A m2 after 24 h of reduction of 50 mM of fumarate

Identiferoai:union.ndltd.org:theses.fr/2017LORR0344
Date24 November 2017
CreatorsPinck, Stéphane
ContributorsUniversité de Lorraine, Jorand, Frédéric, Etienne, Mathieu
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds