Return to search

Proteomic Analysis of the Heat Shock Response in the Nervous System of Locusta migratoria

There is a thermal range for the operation of neural circuits beyond which nervous system function is compromised. Poikilotherms are particularly vulnerable to thermal stress, since their body temperature can fluctuate with ambient temperature. Animals that experience frequent hyperthermia have various coping mechanisms such as the thermoprotective effect of a prior exposure to sublethal temperatures (heat shock response). The molecular mechanisms of this thermoprotection have yet to be understood. This project studies the changes in protein expression in the nervous system of gregarious Locusta migratoria subjected to heat shock. For this purpose, proteins were extracted from metathoracic ganglia (MTG) by different methods and a proteomic map was subsequently obtained by 2-D gel electrophoresis which was compared between control (CON) and heat-shocked (HS) animals. Additionally, the localization pattern of Hsp70 was studied in the MTG of CON and HS gregarious locusts. Although 2-D gels showed changes in the amount of different isoforms of ATP-synthase β, the overall amount of this protein subunit was found to be unchanged. My experiments also revealed no significant change in the distribution of Hsp70 in the MTG of locusts caused by HS. However, new findings show that this protein is constitutively expressed at higher levels in perineurium, glia and tracheal cells than in neurons. In separate experiments, isolated locusts were also examined in order to measure any stress-associated increase of Hsp70 in the tissues of animals not previously exposed to crowding pressure. Quantitative western blots did not show a consistent change of the Hsp70 level in the MTG of isolated locusts following heat shock. Results of my research suggest that the change in the protein profile of the metathoracic ganglion following heat shock, if it exists, is subtle or occurs in very low-abundance proteins whose monitoring requires the application of special techniques. Alternatively, the thermoprotective effect of heat shock on the nervous system might be promoted through other pathways which can change the protein activity at the post-translational level and may work independently from protein synthesis. / Thesis (Master, Biology) -- Queen's University, 2009-03-20 12:28:32.962

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/1727
Date25 March 2009
CreatorsDEHGHANI, MEHRNOUSH
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Format1923240 bytes, application/pdf
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0026 seconds