L'interaction entre une onde de choc plane et un nuage de gouttes d'eau homogène, monodisperse est étudiée dans un tube à choc. Les influences de la fraction volumique d'eau, αd(1 %, 0.3 % et 0.1%), rapport du volume d'eau sur le volume du nuage, de la hauteur du nuage Hd (70 cm, 40 cm et 15 cm), du diamètre des gouttes φd (250 µm et 500 µm ) et du nombre de Mach M (1.3 et 1.5) sont étudiées pour des fractions volumiques inférieures au pour cent. Lors de cette interaction, la pression en paroi du tube à choc est mesurée et la visualisation du nuage est obtenue par une méthode ombroscopique directe. Une évolution temporelle caractéristique de la pression induite par la propagation d'une onde de choc dans un tel milieu, est mise en évidence. Cette allure, diffère significativement de celle obtenue avec un nuage constitué de particules solides: la fragmentation des gouttes en est responsable. Une zone où la pression diminue directement après le pic de pression est alors observée aux stations de mesure localisées dans le nuage. L'atténuation de la surpression est mise en évidence: elle peut atteindre 80% du pic de pression mesuré sans nuage. Dans la partie numérique de ce travail, deux modèles de fragmentation sont implémentés, comparés et validés dans un code de calcul monodimensionel, instationnaire, Eulérien appliqué aux écoulements dilués (αd<1 %). On montre que la formulation du taux de production des gouttes selon le taux d'accroissement soit de leur nombre, soit de leur diamètre doit être utilisée respectivement soit avec, soit sans la prise en compte l'étape de déformation de la fragmentation. / The interaction between a planar shock wave and an both homogeneous and monodispersed droplet water cloud is studied in a shock tube. The effects of the water volume fraction αd (1% %, 0.3 % et 0.1%), ratio between the volume of water and the volume of the cloud, the height of the two-phase medium Hd (70 cm, 40 cm et 15 cm), the droplets diameters φd (250 µm et 500 µm ) and the Mach number M (1.3 et 1.5) are studied for a volume fraction smaller than one per cent. During this interaction, the pressure is measured and the visualization of the cloud is obtained by direct shadowgraphy. A characteristic temporal evolution of the pressure induced by the propagation of the shock wave in such a mixture is highlighted. This behavior differs significatively from the one obtained with a solid particles cloud : the droplet atomization is responsible of this change. A zone where the pressure decreases directly after the pressure peak is observed at different stations located into the water cloud. The mitiagtion of the overpressure is shown: it can reach 80%of the pressure peak measured without cloud. In the numerical part, two fragmentation models are added, compared and validated in a comptutational, one dimensional, instationnary, Eulerien code in the case of dilute flows (αd<1 %). We show that the formulation of the production rate of droplets defined by the number of droplets growth, or the diameter droplet growth, must be used, respectively, with and without taking into account the deformation stage of the droplet breakup. Thus, the numerical results are in good agrement with those obtained experimentally.
Identifer | oai:union.ndltd.org:theses.fr/2012AIXM4732 |
Date | 07 December 2012 |
Creators | Chauvin, Alice |
Contributors | Aix-Marseille, Jourdan, Georges, Houas, Lazhar |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0035 seconds