Return to search

Abordagem neuro-genética para mapeamento de problemas de conexão em otimização combinatória / Neurogenetic approach for mapping connection problems in combinatorial optimization

Devido a restrições de aplicabilidade presentes nos algoritmos para a solução de problemas de otimização combinatória, os sistemas baseados em redes neurais artificiais e algoritmos genéticos oferecem um método alternativo para solucionar tais problemas eficientemente. Os algoritmos genéticos devem a sua popularidade à possibilidade de percorrer espaços de busca não-lineares e extensos. Já as redes neurais artificiais possuem altas taxas de processamento por utilizarem um número elevado de elementos processadores simples com alta conectividade entre si. Complementarmente, redes neurais com conexões realimentadas fornecem um modelo computacional capaz de resolver vários tipos de problemas de otimização, os quais consistem, geralmente, da otimização de uma função objetivo que pode estar sujeita ou não a um conjunto de restrições. Esta tese apresenta uma abordagem inovadora para resolver problemas de conexão em otimização combinatória utilizando uma arquitetura neuro-genética. Mais especificamente, uma rede neural de Hopfield modificada é associada a um algoritmo genético visando garantir a convergência da rede em direção aos pontos de equilíbrio factíveis que representam as soluções para os problemas de otimização combinatória. / Due to applicability constraints involved with the algorithms for solving combinatorial optimization problems, systems based on artificial neural networks and genetic algorithms are alternative methods for solving these problems in an efficient way. The genetic algorithms must its popularity to make possible cover nonlinear and extensive search spaces. On the other hand, artificial neural networks have high processing rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. Additionally, neural networks with feedback connections provide a computing model capable of solving a large class of optimization problems, which refer to optimization of an objective function that can be subject to constraints. This thesis presents a novel approach for solving connection problems in combinatorial optimization using a neurogenetic approach. More specifically, a modified Hopfield neural network is associated with a genetic algorithm in order to guarantee the convergence of the network to the equilibrium points, which represent feasible solutions for the combinatorial optimization problems.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-12062009-150911
Date21 May 2009
CreatorsMatheus Giovanni Pires
ContributorsIvan Nunes da Silva, Rogério Andrade Flauzino, Maria do Carmo Nicoletti, Roseli Aparecida Francelin Romero, José Reinaldo Silva
PublisherUniversidade de São Paulo, Engenharia Elétrica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds