Return to search

Using Silkworms as a Host to Spin Spider Silk-Like Fibers

Using silkworms as the potential host to spin spider silk-like fibers is an area of intense research world-wide. The conventional methods used to create transgenic silkworms hosting spider silk-like gene limits the incorporation of spider silk-like protein and do not improve the mechanical performance of the composite silkworm/spider silk fibers. In this dissertation, synthetic spider ampullate genes were incorporated into the precise site of the fibroin heavy chain or light chain using the latest genome editing technology CRISPR/cas9 guided non-homologous end joining as opposed to conventional random integration using transposon-based piggyBac system. These protocols, with extensive applicability to other silkworm researches, improved the content of spider silk-like protein in the transgenic silkworm/spider silk fibers, increases genetic stability in offspring, and improves the mechanical performance of the transgenic fibers compared to traditional methods. In addition, an enhanced green fluorescence protein (eGFP) was successfully incorporated into the fibroin light chain of silkworms using CRISPR/C as 9 initiated homologous recombination. The transgenic silkworm/spider fibers emitted strong green fluorescence under excitation. These results demonstrate that the we successfully developed a protocol to make silkworm as a host to spin spider silk-like fibers.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-7506
Date01 August 2017
CreatorsZhang, Xiaoli
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0019 seconds