Return to search

Primate lentiviral viral protein R and the DNA damage response: a tale of manipulation and subversion

Vpr is a 14 kDa accessory protein conserved amongst extant primate lentiviruses that is required for virus replication in vivo. Although many functions have been attributed to Vpr, its primary role, and the function under selective pressure in vivo, remains elusive. The minimal importance of Vpr in infection of activated CD4+ T cells in vitro suggests that its major importance lies in overcoming restriction to virus replication in quiescent CD4+ T cells and non-cycling myeloid cell populations, such as macrophages and dendritic cells. Previous studies from our laboratory demonstrated that HIV-1 replication is attenuated in the absence of Vpr in monocyte-derived dendritic cells (MDDCs) and macrophages, which is correlated with the ability of HIV-1 Vpr to overcome a post-integration transcriptional defect in these cells.
In contrast to HIV-1 Vpr-mediated transcriptional enhancement of the viral LTR, here I describe a role for HIV-2 and SIVmac Vpr homologs in the suppression of innate immune sensing of primate lentiviral infection in monocyte-derived dendritic cells (MDDCs). Specifically, the Vpr proteins of HIV-2 and SIVmac, but not that of HIV-1, suppress innate immune detection and induction of type I and type III IFN at two distinct stages of the viral life cycle: prior to and during integration. We posit that HIV-2/SIVmac-lineage Vpr homologs gained this function upon the acquisition of Vpx, a Vpr paralog in the lentiviral genome, that targets the retroviral restriction factor SAMHD1 for proteasomal degradation. Mutational analysis shows that suppression of pre-integration innate immune sensing by HIV-2/SIVmac Vpr homologs is tied to their interaction with the DNA damage response protein human Uracil DNA glycosylase hUNG. Interestingly, the HIV-1 Vpr degrades hUNG, whilst the HIV-2/SIVmac Vpr homologs do not. This difference correlates with the inability of HIV-1 Vpr to suppress type I and III IFN responses in SIVmac Vpx supplemented infections of MDDCs. These results highlight how divergent lentiviruses have tailored interactions of their Vpr proteins with members of the DNA damage response to promote replication in diverse cellular contexts.
This work also describes the conserved role of primate lentiviral Vpr homologs in the transcription of extrachromosomal or unintegrated viral DNA. This function is dependent on Vpr engagement with the host E3-ubiquitin ligase complex Cul4-DDB1-DCAF1 (DCAFCRL4) and ability to activate the DNA damage response. These findings give insight into the mechanisms driving transcription from an underappreciated and long-lived source of viral antigen, and further the field of non-integrating lentiviral vectors, a frequently used tool for the genetic modification of non-dividing cells.
Together, both studies shed light on the way Vpr proteins from diverse primate lentiviruses converge in their manipulation of the DNA damage response to facilitate multiple stages of the virus lifecycle. / 2024-01-24T00:00:00Z

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/45516
Date24 January 2023
CreatorsNodder, Sarah Beth
ContributorsGummuluru, Suryaram
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.002 seconds