For the high performance integrated circuits applications such as microprocessors, memories and high power devices, the metal-oxide-semiconductor field effect transistors (MOSFETs) is the most important device due to its low cost, power consumption and scalable property especially. However, the aggressive scaling of conventional MOS devices suffered from noticeable short channel effects such as drain induction barrier lower, punch through, and direct tunneling gate leakage. Those problems not only lower the gate control ability but also increase the standby power consumption. For future VLSI devises below 65 nm regimes, silicon-on-insulator (SOI) and high-k/metal gate MOSFETs are considered to be possible candidates because of faster operation speed and lower power consumption. Therefore, this dissertation investigates the electrical characteristics and reliability issues of novel MOSFETs for 65 nm and below technology. It is roughly divided into two parts, partially depleted (PD) SOI MOSFETs and high-k/metal gate stack MOSFETs, respectively.
In the first part, we systematically investigate the mechanism of gate-induced floating body effect (GIFBE) for advanced PD SOI n-MOSFETs. Based on different operation conditions, it was found that the dominant mechanism can be attributed to the anode hole injection (AHI) rather than the widely accepted mechanism of electron-valence band (EVB) tunneling. Analyzing the GIFBE in different temperature provides further evidence that the accumulation of holes in the body results from the AHI induced direct tunneling current from the poly-Si gate. In addition, we proposed an approach by bending silicon substrate to further study the impact of mechanical strain on GIFBE. The experimental result indicates that the strain effect indeed decreases the gate leakage current, but increases the hole-valence band (HVB) tunneling current, which indicates that GIFBE becomes serious under mechanical strain. Based on our proposed AHI model, this phenomenon can be mainly due to strain-induced band gap narrowing in the poly-Si gate.
In p-type MOSFETs, the reliability issue, named negative bias temperature instability (NBTI), is the dominant degradation mechanism during ON-state operation. Therefore, we also investigate the GIFBE on NBTI degradation for PD SOI p-MOSFETs. The experimental results indicate GIFBE causes a reduction in the electrical oxide field, leading to an underestimate of NBTI degradation. This can be partially attributed to the electrons tunneling from the process-induced partial n+ poly gate. However, based on different operation conditions, we found the dominant origin of electrons was strongly dependent on holes in the inversion layer under source/drain grounding. Therefore, we propose the anode electron injection (AEI) model, similar to anode hole injection model, to explain how this main electron origin is generated during the NBTI stress. Finally, based on our proposed model, we further study influence of mechanical strain on GIFBE for SOI p-MOSFETs.
On the other hand, the SiO2 dielectric and poly-gate are unsuitable for CMOS application below 45 nm technology node due to unacceptable gate leakage current. Therefore, in the second part of this thesis, we investigate the electrical characteristics and physical mechanisms for MOSFETs with HfO2/TixN1-x stacks by using split C-V, DC Id-Vg, and charge pumping techniques. The experimental results indicates that different ratio of Ti strongly affect various parameters, including threshold voltage, mobility, and subthreshold swing, respectively. In addition, the gate leakage current is also strongly dependent on the nitrogen in metal gate. By charge pumping technique, it was found that with increasing Ti concentration of metal gate, there is a trade-off relationship among the interface traps and bulk defects of high-k dielectric. This phenomenon is associated with the amount of nitride diffusion from the metal gate to high-k bulk and SiO2/Si interface layer.
In the aspects of reliability, charge trapping in high-k gate stacks remains an important issue since it causes the threshold voltage (Vth) shift and drive current degradation. This phenomenon can be attributed to a large number of pre-existing traps in the high-k dielectric layer. In real circuit operation, the devices are generally operated in the dynamic condition. Therefore, the following study further investigates Vth instability of Hf-based n-MOSFETs under the dynamic bias operation. The static condition was also performed on the identical device for a comparison. The results indicate threshold voltage (Vth) instability under dynamic stress is more serious than that under static stress, owning to transient charge trapping within high-k dielectric. In addition, the Vth shift clearly increases with an increase in dynamic stress operation frequency. According to these experimental results, we propose a possible physical model for electron trapping phenomena under dynamic stress. Based on our proposed model, we further dynamic stress induced charge trapping characteristics for devices with different Ti1-xNx composition of metal-gate electrodes.
In addition, we further respectively investigates the temperature dependence of dynamic positive bias stress (PBS) and negative bias stress (NBS) degradation in n-type and p-type MOSFETs with high-k/metal gate stacks. The experimental results indicate there is a contrary trend in temperature dependence of Vth shifts for n- and p-MOSFETs under dynamic PBS and NBS, respectively. The Vth shift decreases with increasing temperature for n-MOSFETs under dynamic PBS. This is due to the thermal emission of trapped electrons in high temperature, leading to the reduction in. A contrary trend with temperature for p-MOSFETs under dynamic NBS can be attributed to the interface trap generation induced by NBTI.
On the other hand, hot carrier effect in high-k/metal gate n-MOSFETs was still one of major device reliability concern in device scaling. However, the stress-induced drain leakage current degradation in device with high-k/metal gate stacks has not received as much attention. In fact, the GIDL behavior is associated with phenomenon of charge trapping in high-k dielectric layer. Therefore, the final study is to investigate the effects of channel hot carrier stress (CHCS) on the gate-induced drain leakage current (GIDL) for n-MOSFETs with HfO2/Ti1-xNx gate stacks. It was found that the behavior of GIDL current during CHCS has dependence with the interfacial layer (IL) oxide thickness of high-k/metal gate stacks. As IL thickness becomes thinner, the GIDL current has a gradual decrease during CHCS, which is contrary to the result of thick-oxide IL devices. Based on the variation of GIDL current in different stress voltage across gate and drain terminals, trap-assisted band to band holes injection model was proposed to explain the different behavior of GIDL current for different IL thickness. Furthermore, we also investigated the impact of different Ti1-xNx composition of metal gate electrode on the IGIDL after CHCS, and observed that the magnitude of IGIDL decreases with the increase of nitride ratio. This is due to the fact that nitride atoms diffusing from the metal gate fill up oxygen vacancies, and reduce the concentration of traps in high-k dielectric.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0726111-152037 |
Date | 26 July 2011 |
Creators | Dai, Chih-Hao |
Contributors | Tsung-Ming Tsai, Cheng-Tung Huang, Ann-Kuo Chu, Ting-Chang Chang, Osbert Cheng |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0726111-152037 |
Rights | withheld, Copyright information available at source archive |
Page generated in 0.0026 seconds