Les tourbillons de sillage d’avion sont sources de problèmes économiques, environnementaux et de sécurité, et par conséquent ont fait l’objet de très nombreuses recherches depuis plusieurs dizaines d’années. Le sillage est composé d’une paire de tourbillons contrarotatifs qui perdurent longtemps après le passage de l’avion. Dans cette thèse la dynamique non linéaire de ces tourbillons desillage est examinée par Simulation Numérique Directe. L’objectif est d’étudier les comportements non linéaires des tourbillons de sillage et d’évaluer le potentiel de destruction anticipée des tourbillons par la perturbation optimale. Dans un premier temps, le potentiel destructeur de la perturbation optimale linéaire est estimé en l’appliquant aux tourbillons avec une amplitude initiale croissante et en observant la réponse non linéaire de l’écoulement. Une amplitude raisonnable suffit pour que la perturbation optimale linéaire réduise de moitié la durée de vie des tourbillons en accélérant une perte de cohérence des structures après l’étape de reconnexion. Par la suite, l’outil d’optimisation non linéaire développé au cours de la thèse est validé par la reproduction de résultats existants concernant un écoulement simple: un toubillon 2D isolé. De nouveaux résultats d’optimisation non linéaire sont obtenus et analysés. En particulier, la perturbation optimale non linéaire 2D d’un tourbillon isolé peut générer une croissance transitoire bien plus élevée que la perturbation optimale linéaire. Dans certains cas la perturbation optimale non linéaire provoque une transition vers un état non axisymétrique quasi-stationnaire,contournant ainsi le processus naturel d’axisymétrisation. De plus, l’effet de la distribution de vorticité dans le coeur du tourbillon sur les perturbations optimales est étudié. Les tourbillons ayant un profil plus raide que les tourbillons Gaussiens subissent une croissance transitoire linéaire plus élevée mais une croissance non linéaire plus faible. Enfin, l’analyse de perturbation optimale non linéaire est étendue aux perturbations 3D. Bien que les perturbations optimales non linéaires 3D produisent moins d’amplification, des transitions vers des états énergétiques et persistants sont observées. / Aircraft wakes have been the subject of extensive research for several decades as it poses economic, safety and environmental issues. The wake is composed of powerful counter-rotating vortices that persist long after the aircraft has passed. In this thesis, the nonlinear dynamics of aircraft wake vortices is investigated through Direct Numerical Simulation. The aim is to explore the nonlinear effects on wake vortex behaviour and evaluate the potential for the anticipated destruction of the vortices through optimal perturbation. First the disruptive potential of the linear optimal perturbation of the flow is evaluated by applying it with increasing initial amplitude and observing the nonlinear response of the flow. With sufficient yet reasonable initial amplitude the linear optimal perturbation halves the life-span of the vortex pair by accelerating the loss of coherence of the vortices after the linking phase. Next the nonlinear gradient-based optimisation tool that was developed during the thesis is validated by reproducing existing results concerning a simple vortical flow: an isolated two-dimensional vortex. In doing so new nonlinear optimisation results are obtained and analysed. In particular it is shown that the 2D nonlinear optimal perturbation of an isolated vortex can induce considerably greater transient growth than the linear optimal. In some cases the nonlinear optimal causes a transition to a quasisteady asymmetric state, bypassing the natural axisymmetrisation process. The effect of the vortex vorticity profile on the optimal perturbations is also studied. Vortices with sharper profiles experiencefar greater linear perturbation growth, however the nonlinear growth is significantly inferior. Finally the nonlinear optimal perturbation analysis of the isolated vortex is extended to three dimensions. Although the 3D nonlinear optimals produce less growth than their linear counterparts, they can lead to quasi-permanent high energy states.
Identifer | oai:union.ndltd.org:theses.fr/2016SACLX101 |
Date | 07 December 2016 |
Creators | Johnson, Holly |
Contributors | Université Paris-Saclay (ComUE), Jacquin, Laurent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0067 seconds