Return to search

SISTEMA MULTIAGENTE PARA AVALIAÇÃO DO EFEITO DE AGLOMERAÇÃO EM NANOPARTÍCULAS POLIMÉRICAS

Submitted by MARCIA ROVADOSCHI (marciar@unifra.br) on 2018-08-20T12:59:30Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_AlexandredeOliveiraZamberlan.pdf: 14214019 bytes, checksum: cdd28b0c541b52994e91cbeb4ec0c2fe (MD5) / Made available in DSpace on 2018-08-20T12:59:31Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_AlexandredeOliveiraZamberlan.pdf: 14214019 bytes, checksum: cdd28b0c541b52994e91cbeb4ec0c2fe (MD5)
Previous issue date: 2018-03-23 / Production and characterization of polymer nanoparticles (PNPs), colloidal dispersions, are
processes that require time and technical skills to produce accurate results. Computational simulations
in Nanoscience have aided in these processes, providing support and agility to achieve
better results. In this work, the challenge was to show, previously, by computational simulation,
the agglomeration behavior, which indicates instability in a nanoparticulate system. These
PNPs are used for transport and delivery of drugs in various treatments. The Computing area
has methods based on behaviors derived from nature, such as systems of intelligent collective
behavior or MAS. Such systems are composed of agents - programs - living in society, which
interact with each other. This approach facilitates the implementation of real systems that require
observation of specific behavior, since each agent can be programmed individually to perceive
other agents, the environment and respond to these perceptions so that the behavior of the system
arises from the interactions of these agents agents. Thus, the objective of the work was to evaluate
the agglomeration effect of polymer nanoparticles (PNPs) through design, implementation and
testing of the simulation environment using MAS theory. The methodology used was computer
simulation supported by a case study. For the case study, a simulation environment was constructed
with functionalities to produce interactions between particles from physical-chemical
parameters, that guarantee the Brownian movement with elastic and inelastic collisions. This
environment, named "Multi-Agent System for Polymeric Nanoparticles" (MASPN), has been
developed according to the Feature Driven Development (FDD) methodology of software design
and the methodology of Multi-Agent Systems. In addition, we used the event-oriented simulation
package algs4 and the JASON agent building environment, all integrated by Java technology. The
package has implementations of various functions for scientific computing and event-oriented
simulation, including resolution of particle-particle and particle-wall collisions, obeying the
stochastic model of Brownian motion. The MASPN environment emerges as the main result
of this research, since it is an alternative simulation tool, containing graphical interface with
integrated physicochemical parameters, distribution graphs (particle size, particle zeta potential
and environment pH), particle animation under the Brownian mathematical model.The parameters
of the simulations, for evaluation of the agglomeration effect, are size, size distribution,
surface electric charge, mass, drug content and pH. Finally, the simulation environment designed
and built, integrating areas, methodologies and technologies, can be considered a resource in
the production and characterization of polymer nanoparticles, since the simulations performed
had significantly accurate results. In addition, we can be stated that scientifically this research
provides perspectives of future work in Pharmacy, Chemistry, Physics and/or Computing. / Produção e caracterização de nanopartículas poliméricas (NPPs), dispersões coloidais, são processos
que exigem tempo e habilidades técnicas para produzir resultados precisos. Simulações
computacionais em Nanociência têm auxiliado nesses processos, fornecendo suporte e agilidade
para alcançar melhores resultados. Neste trabalho, o desafio foi mostrar, previamente, por simulação
computacional, o comportamento de aglomeração, que pode indicar instabilidade em um
sistema nanoparticulado. As NPPs podem ser utilizadas para transporte e entrega de fármacos
em diversos tratamentos. A área da Computação possui métodos baseados em comportamentos
advindos da natureza, como sistemas de comportamento coletivo inteligente ou Sistemas
Multi-agentes (SMA). O uso dessa abordagem facilita a implementação de sistemas reais que
necessitam de observação de comportamento específico, pois se pode programar individualmente
cada agente para que perceba outros agentes, o ambiente e responda a essas percepções de forma
que o comportamento do sistema observado surja a partir das interações desses agentes. Dessa
forma, o objetivo do trabalho foi avaliar o efeito de aglomeração de nanopartículas poliméricas,
por meio de projeto, implementação e testes de um ambiente de simulação com o uso da abordagem
SMA. A metodologia de pesquisa empregada foi simulação computacional amparada por
estudo de caso, em que foi construído um ambiente de simulação com funcionalidades de produzir
interações entre partículas a partir de um conjunto reduzido de parâmetros físico-químicos,
que garantam o movimento Browniano, relacionado ao modelo estocástico, que muitas vezes
é chamado de teoria da partícula. O ambiente, nominado de Multi-Agent System for Polymeric
Nanoparticles (MASPN), vem sendo desenvolvido de acordo com a metodologia Feature Driven
Development (FDD) de projeto de software e a metodologia de Sistemas Multiagentes. Também,
foram utilizados o pacote de simulação orientada a eventos algs4 e o ambiente de construção de
agentes JASON, todos integrados pela tecnologia Java. Sendo assim, o ambiente MASPN surge
como o principal resultado desta investigação, pois é uma ferramenta de simulação alternativa,
contendo interface gráfica com parâmetros físico-químicos integrados, gráficos de distribuição
e animação de partículas sob o modelo matemático de partícula. Os parâmetros tratados nas
simulações são diâmetro, distribuição de tamanho, carga elétrica de superfície, massa, teor
do fármaco e pH. Finalmente, o ambiente de simulação proposto com a integração de áreas,
metodologias e tecnologias pode ser considerado um recurso na produção e na caracterização
de nanopartículas poliméricas, uma vez que as simulações executadas no MASPN e relatadas
neste trabalho tiveram resultados significativamente positivos. Além disso, pode-se afirmar que
cientificamente esta investigação proporciona perspectivas de trabalhos futuros tanto na Farmácia,
Química, Física quanto na Computação.

Identiferoai:union.ndltd.org:IBICT/oai:tede.universidadefranciscana.edu.br:UFN-BDTD/579
Date23 March 2018
CreatorsZamberlan, Alexandre de Oliveira
ContributorsFagan, Solange Binotto, Bordini, Rafael Heitor, Dhein, Guilherme, Morisso, Fernando Dal Pont, Laporta, Luciane Variane, Santos, Cláudia Lange dos
PublisherUniversidade Franciscana, Programa de Pós-Graduação em Nanociências, UFN, Brasil, Biociências e Nanomateriais
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional Universidade Franciscana, instname:Universidade Franciscana, instacron:UFN
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds