Return to search

Simulation multi-échelle de l’atomisation d’un jet liquide sous l’effet d’un écoulement gazeux transverse en présence d’une perturbation acoustique / Multiscale simulation of the atomization of a liquid jet in oscillating gaseous crossflow

La réduction des émissions polluantes est actuellement un enjeu majeur au sein du secteur aéronautique. Parmi les solutions développées par les motoristes, la combustion en régime pauvre apparaît comme une technologie efficace pour réduire l’impact de la combustion sur l’environnement.Or, ce type de technologie favorise l’apparition d’instabilités de combustion issues d’un couplage thermo-acoustique. Des études expérimentales précédemment menées à l’ONERA ont mis en évidence l’importance de l’atomisation au sein d’un injecteur multipoint sur le phénomène d’instabilités de combustion. L’objectif de cette thèse est de mettre en place la méthodologie multi-échelle pour reproduire les phénomènes de couplage entre l’atomisation du jet liquide en présence d’un écoulement gazeux transverse (configuration simplifiée d’un point d’injection d’un injecteur multipoint) et d’une perturbation acoustique imposée, représentative de l’effet d’une instabilité de combustion. Ce type d’approche pourra, à terme, être utilisé pour la simulation instationnaire LES d’un système de combustion, et permettra de déterminer les temps caractéristiques de convection du carburant liquide pouvant affecter les phénomènes d’évaporation et de combustion, et donc l’apparition des instabilités de combustions. Afin de valider cette approche,les résultats issus des simulations sont systématiquement comparés aux observations expérimentales obtenues dans le cadre du projet SIGMA. Dans un premier temps, une simulation du jet liquide en présence d’un écoulement gazeux transverse est réalisée. Cette simulation a permis de valider l’approche multi-échelle : pour cela, les grandes échelles du jet, ainsi que les mécanismes d’atomisation reproduits par les simulations, sont analysés. Ensuite, l’influence d’une perturbation acoustique sur l’atomisation du jet liquide est étudiée. Les comportements instationnaires du jet et du spray issu de l’atomisation sont comparés aux résultats expérimentaux à l’aide des moyennes temporelles et des moyennes de phase. / The reduction of polluting emissions is currently a major issue in the aeronautics industry.Among the solutions developed by the engine manufacturers, lean combustion appears as an effectivetechnology to reduce the impact of combustion on the environment. However, this type oftechnology enhances the onset of combustion instabilities, resulting from a thermo-acoustic coupling.Experimental studies previously conducted at ONERA have highlighted the importanceof atomization in a multipoint injector to the combustion instabilities. The aim of this thesis isto implement the multi-scale methodology to reproduce the coupling phenomena between theatomization of the liquid jet in the presence of a crossflow (which is a simplified configuration ofan injection point of a multipoint injector) and an imposed acoustic perturbation, representativeof the effect of combustion instabilities. This type of approach can ultimately be used for the unsteadysimulation of a combustion system, and will determine the characteristic convection timesof the liquid fuel that can affect the phenomena of evaporation and combustion, and therefore theappearance of combustion instabilities. In order to validate this approach, the results obtainedfrom the simulations are systematically compared with the experimental observations obtainedwithin the framework of the SIGMA project. First, a simulation of the liquid jet in gaseous crossflowis performed. This simulation enabled us to validate the multi-scale approach : to this end,the large scales of the jet, as well as the atomization mechanisms reproduced by the simulations,are analyzed. Then, the influence of an acoustic perturbation on the atomization of the liquidjet is studied. The unsteady behavior of the jet and the spray resulting from the atomization arecompared with the experimental results using time averages and phase averages.

Identiferoai:union.ndltd.org:theses.fr/2018ESAE0033
Date05 December 2018
CreatorsThuillet, Swann
ContributorsToulouse, ISAE, Gajan, Pierre, Zuzio, Davide
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds