• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 24
  • 3
  • 1
  • Tagged with
  • 111
  • 41
  • 30
  • 23
  • 20
  • 19
  • 18
  • 15
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of the spray forming of Al-Li alloys

Antipas, George January 1995 (has links)
The atomization and spray forming of liquid metals was studied. Melt break up algorithms were developed to predict the size distribution of the spray generated as well as secondary aspects of the atomization phenomena. In the model, which is based on the Surface Wave Formation (SWF) theory, the relative velocity between the gas and melt phase was thought to induce a sinusoidal disturbance on the surface of the melt column. Depending on the flow conditions such a disturbance could grow in amplitude and cause certain parts of the surface to be torn off the liquid column. A number of different approaches to the problem of drop disintegration were also considered. Based on experimental observations of the critical Weber number made by other authors, a criterion was formulated, which allowed the secondary break up of drops to be predicted. In addition, an analytical model originally presented by Wolf and Andersen (1965), which was intended to describe the stripping mode of secondary disintegration, was also revised and incorporated into a computer routine. Finally a comparison of the models was made against the predictions of the empirical Lubanska (1970) equation. High Speed Photography studies of a water column atomized by gas revealed that the formation of a surface wave was the prominent mechanism perturbing and finally disintegrating the column into a fine spray of drops. Phase Doppler Anemometry studies of the water/gas jet produced during the atomization of a water column indicated that there was a gradient of particle sizes across the spray. The finer fragments were found in the close proximity of the centre axis of the conical flow, with particles becoming larger in size as the distance from the centre increased. Vaporization of the water drops near the centre due to the high gas velocities should be taken into account when interpreting these results. The break up algorithms were tested against experimental data for a number of different A1 and Fe alloys with various solute elements, obtained using a close coupled atomization facility. Case studies were made for the effects of gas injection pressure, initial melt stream diameter, initial melt stream exit velocity and number of atomizing gas jets on the mean powder particle size produced. The algorithms could predict the distribution of drop sizes in space, a feature that enabled the simulation of spray forming runs and the direct comparison of the numerical predictions to experimental data. The shapes of the Al-1.6wt%Hf and the Al-1.6wt%Hf-3.2wt%Li alloy preforms and the particle distribution along the radial direction of the Al-1.6wt%Hf preform were calculated and compared favourably with experimental data. Microscopic observation of Al-1.6wt%Hf and Al-1.6wt%Hf-3.2wt%Li preforms indicated that there was a variance of particle size as well as grain size along the radial direction of the spray. The grain size was found to decrease with increasing distance from the central axis of the preform, while the radial distribution of drop diameters did not reveal a distinct trend.
2

Etude expérimentale des mécanismes d'atomisation effervescente. Application à la sécurité incendie dans les moteurs aéronautiques.

Tinon, Emmanuelle 12 April 2018 (has links) (PDF)
Les incendies font partie des risques les plus redoutables en aéronautique, en raison des difficultés à les combattre, comme par exemple dans les espaces confinés où la propagation peut être très rapide. Le Halon1301 est utilisé depuis plus de 50 ans comme agent extincteur pour les moteurs d'avions, l'APU (Auxiliary Power Unit) et les applications de protection feux cargo. Le Halon1301 possède des propriétés spécifiques pour les systèmes de protection feux des moteurs. Il possède un point d'ébullition bas et une pression vapeur élevée, ce qui facilite le mélange de l'agent avec l'air de la ventilation dans les zones feux. De plus, son point d'ébullition à -57,8°C et sa capacité à se vaporiser à chaque point de décharge sont des propriétés physiques désirables. Suite à des changements de la réglementation environnementale, il est nécessaire de remplacer le Halon1301, l'agent extincteur actuellement présent sur les systèmes de protection feux des moteurs d'avions. L'utilisation de cet agent a été bannie dans l'industrie par le protocole de Montréal (1994) et de Kyoto (1998) qui vise à réduire les substances qui appauvrissent la couche d'ozone ainsi que les gaz à effet de serre. Des dérogations établies par la Commission Environnementale Européenne existent et sont appliquées au domaine de l'aéronautique à cause du manque de solutions alternatives. Depuis plusieurs années, Airbus travaille sur le projet de remplacement du Halon1301, appliqué notamment aux systèmes de protection feux des zones moteurs et APU. Depuis 2003, plusieurs agents alternatifs au Halon1301 ont été identifiés. Dans notre cas, on s'intéresse à un candidat qui apparait comme une alternative intéressante respectueuse de l'environnement : le \novec. La différence la plus importante entre le Halon1301 et le Novec1230 est leur phase physique. En effet, le Halon1301 est un gaz, alors que le Novec1230 est liquide en conditions ambiantes (il est liquide en dessous de +49,2°C). Que ce soit à la température de ventilation froide (température négative) ou à l'ambiant (+25°C), l'agent sera liquide. Les caractéristiques d'évaporation (courbe de saturation) indiquent que pour ces applications, nous sommes dans un état diphasique avec la présence de gouttes et de gaz : plus le mélange sera froid et plus l'équilibre sera déplacé vers la phase liquide. En phase gazeuse, le transport de l'agent dans chaque recoin du moteur ne pose pas de problème car il sera transporté par l'écoulement d'air de la ventilation. Or, en phase liquide, le transport efficace de l'agent sous forme de gouttes est plus complexe : si les gouttes sont trop grosses, elles tendront à avoir une trajectoire balistique et n'atteindront pas toutes les zones feux du moteur. Par conséquent, l'optimisation de l'atomisation de l'agent devient un paramètre central pour la conception du système de protection des incendies. Dans le contexte du projet, on étudie une technologie appelée atomisation effervescente. Le principe est de venir dissoudre un gaz (dans notre cas du dioxyde de carbone, CO2), dans l'agent liquide Novec1230. Plusieurs adaptations de cette technologie sont requises pour améliorer les performances de l'agent tel que son atomisation et son transport. Le processus d'atomisation effervescente est une technique d'atomisation diphasique prometteuse qui offre des améliorations potentielles en termes de qualité d'atomisation du fluide et de réduction de pression d'utilisation. L'objectif de ce projet est de conduire des recherches expérimentales sur le processus d'atomisation effervescente afin de prédire quels sont les paramètres clés qui influencent l'atomisation.
3

Développement et évaluation de formulations lipidiques à poudre sèche pour inhalation

Sebti, Thami 26 June 2006 (has links)
De nos jours, la voie inhalée constitue le mode d’administration optimal dans le traitement de nombreuses affections respiratoires, et suscite beaucoup d’intérêt pour la délivrance systémique de médicaments. Cependant, le poumon est un organe complexe doté de mécanismes de défense efficients qui limitent la déposition des particules inhalées et les éliminent très rapidement. Cette voie d’administration fait donc l’objet de programmes de recherche intensifs visant à améliorer l’efficacité de la délivrance et la compliance du patient. Il faut néanmoins signaler que le nombre d’excipients dont l’innocuité a été démontrée en inhalation (sous forme de poudre sèche) reste extrêmement limité à l’heure actuelle. A cet égard, l’utilisation de microparticules lipidiques solides (mPLS), constituées d’un mélange de cholestérol et de phospholipides biodégradables et caractérisés par une température de transition de phase élevée, a été envisagée. Le procédé retenu pour la préparation de ces mPLS est la technique d’atomisation à température modérée (spray-drying). Dans un premier temps, le travail a consisté à mettre au point les conditions opératoires de fabrication (température et débit de l’air d’entrée et de sortie, débit de pulvérisation, pression et température de l’air de pulvérisation, etc.) ainsi que les paramètres de formulation (proportions de cholestérol / phospholipides / principe actif (PA)) afin d’obtenir de manière reproductible des microparticules présentant les caractéristiques appropriées pour une délivrance pulmonaire. Deux types de formes ont été développés : Une forme à poudre sèche dite conventionnelle (mélange physique PA-excipient). Les particules cohésives de PA sont mélangées au transporteur lipidique en vue d’améliorer leurs propriétés d’écoulement et de favoriser leur redispersion lors de l’inhalation. Une forme matricielle permettant également d’améliorer les propriétés d’écoulement et de dispersion, mais qui à la différence de la forme précédente ne nécessite pas d’étape de mélange. Elle consiste à incorporer le PA dans la masse lipidique. Dans ce cas-ci, l’utilisation de tels excipients a pour effet de modifier les propriétés de dissolution du PA et donc de contrôler sa vitesse de libération. Ensuite, les caractéristiques physico-chimiques des mPLS ont été évaluées. Celles-ci comprenaient aussi bien la taille et la distribution de taille (analyse granulométrique par diffraction laser) que la forme (analyse par microscopie électronique à balayage) et la densité des particules produites (analyse par tassement). Ont suivi les évaluations de l’état physique (polymorphisme) et des propriétés thermiques par calorimétrie à balayage différentiel et par diffraction aux rayons X. Le procédé de micronisation par atomisation a permis d’obtenir des microparticules sphériques de structure homogène dont la surface apparaît comme parfaitement lisse et régulière. Les mPLS, et plus particulièrement les formulations matricielles, se caractérisent par des densités relativement faibles et de bonnes propriétés d'écoulement. Les performances d’aérosolisation ont été étudiées au moyen de l’impacteur en verre et de l’impacteur liquide multi-étages. Les mPLS présentent un comportement aérodynamique remarquable ; les fractions pulmonaires (FP) sont significativement supérieures à celles des produits de référence (Pulmicortâ Turbohalerâ 200 µg et Flixotide® Diskusâ 250 µg) ainsi qu’à celles d’autres formulations conventionnelles délivrées via le même dispositif d’inhalation (Aeroliserâ). Puis, une étude de stabilité a été réalisée sur les formulations dont les propriétés satisfaisaient à nos exigences. Il en ressort que les mPLS conservent leurs caractéristiques initiales pour autant que les conditions de stockage ne dépassent pas les 30°C/65% HR. Dans le cadre de l’optimisation du processus de mélange de poudres à PA cohésif et faiblement dosé (destinées à une inhalation sous forme de poudre sèche), une étude a porté sur l’influence vis à vis de l’homogénéité du mode d’action et des caractéristiques de trois types de mélangeurs fréquemment employés pour effectuer des mélanges solides pulvérulents : un mélangeur à cuve mobile de type Turbula®, un mélangeur planétaire (Colette MP-20®) et un mélangeur-granulateur à haute vitesse (Mi-Pro®). Il a été démontré, par après, que les mélanges physiques PA-excipients lipidiques s’effectuent de façon efficace dans les conditions opératoires fixées. Finalement, une étude pharmaco-scintigraphique a été menée à l’Hôpital Erasme sur six volontaires sains. Les résultats de déposition pulmonaire sont en parfaite corrélation avec les valeurs de FP observées in vitro. En revanche, les résultats de l’analyse pharmacocinétique ne sont pas assez concluants pour mettre en évidence la régulation de la cinétique de libération du PA à partir des formes matricielles.
4

Investigations expérimentales sur les phénomènes de cavitation et d'atomisation dans les injecteurs diesel

Saliba, Ralph Champoussin, Jean-Claude. January 2006 (has links) (PDF)
Thèse de doctorat : sciences. Thermique et énergétique : Ecully, Ecole centrale de Lyon : 2006. / 91 réf.
5

Investigations expérimentales sur les phénomènes de cavitation et d'atomisation dans les injecteurs diesel

Saliba, Ralph Champoussin, Jean-Claude. January 2006 (has links) (PDF)
Thèse de doctorat : sciences. Thermique et énergétique : Ecully, Ecole centrale de Lyon : 2006. / Titre provenant de l'écran-titre. 91 réf.
6

Contribution à l'étude de l'usage du brouillard d'eau dans la lutte contre les incendies en tunnels ventilés longitudinalement

Meyrand, Raphaël 14 December 2009 (has links) (PDF)
Cette étude s'inscrit dans la recherche d'une meilleure maîtrise des feux en tunnel à partir d'installations fixes type brouillard d'eau. Ce travail essentiellement expérimental s'est appuyé sur des essais réalisés en réduction d'échelle. Les paramètres d'étude sont : le type de foyer (feu de nappe, bûchers et empilements de palettes), la vitesse de ventilation longitudinale (inférieure ou supérieure à la vitesse critique), le déclenchement ou non d'un système de brouillard d'eau ainsi que la sectorisation de celui-ci. A son terme, cette étude a permis d'analyser les effets de l'aspersion sur la puissance intrinsèque du foyer, la stratification des fumées et la tenabilité thermique dans l'ouvrage. Une discussion sur les stratégies d'application de la ventilation en cas d'incendie en tunnel et son couplage avec l'aspersion a également été menée, montrant une nette amélioration de l'efficacité du brouillard lorsque la vitesse de ventilation est faible, et ce en dépit de l'augmentation de puissance du foyer due à l'effet de confinement de l'ouvrage. De plus, un travail de réflexion et de synthèse sur les relations de similitude à respecter lors d'une étude de ce type en réduction d'échelle a été conduit, que ce soit concernant l'aéraulique, la puissance du foyer ou les caractéristiques du brouillard d'eau. Enfin, une étude annexe sur l'influence d'un brouillard d'eau sur l'opacité des fumées a été réalisée, quantifiant l'extinction optique des fumées chargées en gouttelettes d'eau.
7

Etude expérimentale de la formation d'un spray à partir d'un film liquide annulaire cisaillé

Gosselin, Valentin gregoire 23 January 2019 (has links) (PDF)
Un moyen d'accroître l'efficacité et de réduire la pollution dans les domaines du transport et de l'énergie consiste à concevoir des injecteurs de carburant produisant une meilleure atomisation. Au cours de cette thèse, des expériences ont été effectuées sur un injecteur airblast souvent utilisé dans les turbines à gaz. Pour réaliser ces expérimentations, un dispositif modèle en configuration annulaire a été créé afin d'étudier le cisaillement d'un film d'eau soumis à un écoulement d'air interne à forte vitesse. La technique d'imagerie rapide par ombroscopie a été utilisée pour analyser le développement du film liquide (fréquence et célérité des ondes) et l'atomisation de la nappe en sortie d'injecteur (modes de rupture). La modification des paramètres d'injection (vitesse des écoulements) a révélé un lien entre la topologie du film liquide et le régime d'atomisation primaire. Finalement, à titre exploratoire, l'influence de la géométrie de l'injecteur (longueur de préfilm) sur le mode d'atomisation primaire a également été mise en évidence
8

Elaboration et caractérisation de micro- et nano-composites alumine-zircone pour application orthopédique

Gutknecht, Dan Chevalier, Jérôme. January 2007 (has links)
Thèse doctorat : Génie des Matériaux : Villeurbanne, INSA : 2006. / Titre provenant de l'écran-titre. Bibliogr. p. 121-133. Glossaire.
9

Étude expérimentale de l'atomisation assistée de jets diphasiques gaz-liquide / Experimental study of an assisted atomization of a two-phase gaz-liquid jet

Guillard, Jean-Christophe 12 July 2016 (has links)
L’atomisation assistée d’une phase liquide lente par un co-courant gazeux rapide est un sujet largement étudié dans la littérature, et des avancées notables sont intervenues notamment sur les mécanismes de brisure, la structure du jet atomisé ainsi que sur les caractéristiques des gouttes formées. En revanche, peu d’études traitent d’une configuration où la phase lente consiste en un jet diphasique gaz-liquide. Cette situation se rencontre par exemple lors du transitoire d’allumage des moteurs cryotechniques de fusée durant lequel la fraction volumique de gaz passe continument de 1 (jet interne purement gazeux) à 0 (jet interne purement liquide), de sorte que pratiquement tous les régimes d’écoulements diphasiques, allant du régime à bulles jusqu’aux écoulements annulaires, peuvent être observés.L’objectif est donc de comprendre comment la fraction volumique de gaz et/ou le régime d’écoulement diphasique du jet interne impactent les modes d’atomisation et in fine les caractéristiques du spray.Pour répondre à ces questions, des expérimentations ont été menées avec comme fluides de substitution de l’air et de l’eau en conditions ambiantes et sous gravité terrestre. Les trois paramètres de contrôle principaux sont la vitesse superficielle du liquide qui a été variée de 0,17 m/s à 2 m/s, la vitesse superficielle du gaz dans le jet interne qui a été fixée de telle sorte que la fraction de débit gaz balaye la plage 0 à 0,99 et enfin la vitesse du gaz externe qui a évolué entre de 20 à 200 m/s. Trois géométries d’injecteurs axisymétriques ont été utilisées pour d’une part accéder à tous les régimes d’écoulements diphasiques souhaités excepté l’écoulement à brouillard, et d’autre part pour varier le diamètre du jet central d’un facteur d’environ deux. Deux types de campagnes expérimentales ont été réalisées : une campagne à rapport des pressions dynamiques gaz-liquide fixé à 16 pour des fractions de débit volumique gaz variables, ainsi que des campagnes à fractions de débit volumique gaz fixe et M variable .Les caractéristiques structurelles du spray, sa longueur de brisure et l’angle du spray formé ont été mesurés par imagerie rapide alors que les caractéristiques de la phase dispersée, c’est-à-dire tailles, vitesses et flux de gouttes ont été mesurés par sonde optique.Les cartographies des régimes d’écoulements dans l’injecteur et des structures du jet diphasique avec et sans assistance par le gaz externe que nous avons établies ont permis de démontrer que ces structures étaient étroitement liées au régime d’écoulement du jet central. Trois modes d’atomisation principaux ont été identifiés et leur frontières établies. A faible fraction de débit gaz, l’atomisation de jets liquides chargés en petites bulles est sujet à l’épluchage de surface et aux battements latéraux à grande échelle comme sur un jet monophasique liquide. A très grande fraction de débit gaz, l’écoulement annulaire donne lieu à l’atomisation d’une nappe annulaire. Pour des valeurs intermédiaires, de nouvelles structures de type "parapluie" se forment à l’arrivée des bouchons de gaz caractérisées par une grande amplitude et un développement orthogonal au jet. L’atomisation des écoulements à régimes « churn » et annulaire donne lieu à des sprays à caractère intermittent du fait de passage de blocs liquides issus de l’écoulement interne.La longueur de brisure est réduite par l’ajout de gaz interne jusqu’à devenir très petite pour les fractions de débit gaz élevées. Le comportement de l’angle du spray est différent selon le diamètre du jet atomisé et le régime d’écoulement interne : il peut augmenter ou réduire selon la configuration.Les pdf centrées sur la taille goutte moyenne sont peu sensibles à la fraction de débit gaz. En revanche les tailles de gouttes moyennes et le flux volumique montrent des évolutions marquées : ils peuvent selon la fraction de débit gaz et donc selon la structure du jet atomisé réduire ou augmenter. / Assisted atomization of a liquid phase slow by a rapid gas co-current is a topic widely studied in the literature, and significant advances have occurred especially on the breakup mechanisms, the structure of the atomized jet as well as the characteristics of formed drops. However, few studies deal with a configuration where the slow phase consists of a two-phase liquid-gas jet. This situation occurs for example during the transitional ignition of cryogenic rocket engines during which the volumic gas fraction decreases continuously from 1 (purely gas) to 0 (purely liquid), so that almost all two-phases flow regimes, from bubbly flow to annular flow can be observed.The goal is to understand how the volumic gas fraction and/or two-phase flow regime of internal jet impact the atomization modes and the characteristics of the spray.To answer these questions, experiments were conducted with as fluid of substitution air and water under ambient conditions and under gravity. The three main control parameters are the superficial velocity of the liquid which was varied from 0.17 m/s to 2 m/s, the superficial gas velocity in the internal jet that has been set so that the gas flow rate fraction sweeps the range 0 to 0.99 and finally the external gas velocity that has evolved between 20 to 200 m/s. Three geometries of axisymmetric injectors were used to firstly access any desired phase flow regimes except mist flow, and also to vary the diameter of the central jet by a factor of about two. Two types of experimental campaigns were carried out: a campaign where the gas-liquid dynamic pressure ratio was set at 16 for varied gas flow rate fraction, as well as campaigns with fixed gas flow rate fraction and variable M.The structural characteristics of the spray, its breakup length and the angle of spray were measured by high speed imaging while the characteristics of the dispersed phase, that is to say, sizes, velocities and flows of the drops were measured by optical probe.Mapping of flow regimes in the injector and two-phase jet structures with and without assistance by external gas that we have established have shown that these structures were closely related to the flow regime of the central jet. Three main atomization modes were identified and its borders established. For small gas flow rate fraction, the atomization of liquid jets laden bubbles is subject to surface peeling and large-scale lateral beats like a single phase liquid jet. For very large gas flow rate fraction, the annular flow results in the atomization of an annular liquid sheet. For intermediate values, new structures type of umbrella form at the arrival of gas slugs characterized by high amplitude and orthogonal development with respect to the jet. Atomization of “churn" flow and annular flow gives rise to intermittent sprays because of passage of "liquid blocks" from the internal flow.The breakup length is reduced by the addition of internal gas and become very small for the high gas flow rate fractions. The behavior of the angle of the spray is different depending on the diameter of the atomized jet and the internal flow regime. It may therefore increase or decrease depending on configuration.Centred pdf on mean drop size are not much sensitive to the gas flow rate fraction. However mean drop sizes and volumic fluxes show marked evolution: they can according to the gas flow rate fraction and therefore the atomized jet structure decrease or increase.
10

Etude expérimentale des mécanismes d'atomisation effervescente. Application à la sécurité incendie dans les moteurs aéronautiques. / Experimental study of effervescent atomization mechanisms. Application to fire safety in aircraft engines

Tinon, Emmanuelle 12 April 2018 (has links)
Les incendies font partie des risques les plus redoutables en aéronautique, en raison des difficultés à les combattre, comme par exemple dans les espaces confinés où la propagation peut être très rapide. Le Halon1301 est utilisé depuis plus de 50 ans comme agent extincteur pour les moteurs d'avions, l'APU (Auxiliary Power Unit) et les applications de protection feux cargo. Le Halon1301 possède des propriétés spécifiques pour les systèmes de protection feux des moteurs. Il possède un point d'ébullition bas et une pression vapeur élevée, ce qui facilite le mélange de l'agent avec l'air de la ventilation dans les zones feux. De plus, son point d'ébullition à -57,8°C et sa capacité à se vaporiser à chaque point de décharge sont des propriétés physiques désirables. Suite à des changements de la réglementation environnementale, il est nécessaire de remplacer le Halon1301, l'agent extincteur actuellement présent sur les systèmes de protection feux des moteurs d'avions. L'utilisation de cet agent a été bannie dans l'industrie par le protocole de Montréal (1994) et de Kyoto (1998) qui vise à réduire les substances qui appauvrissent la couche d'ozone ainsi que les gaz à effet de serre. Des dérogations établies par la Commission Environnementale Européenne existent et sont appliquées au domaine de l'aéronautique à cause du manque de solutions alternatives. Depuis plusieurs années, Airbus travaille sur le projet de remplacement du Halon1301, appliqué notamment aux systèmes de protection feux des zones moteurs et APU. Depuis 2003, plusieurs agents alternatifs au Halon1301 ont été identifiés. Dans notre cas, on s'intéresse à un candidat qui apparait comme une alternative intéressante respectueuse de l'environnement : le \novec. La différence la plus importante entre le Halon1301 et le Novec1230 est leur phase physique. En effet, le Halon1301 est un gaz, alors que le Novec1230 est liquide en conditions ambiantes (il est liquide en dessous de +49,2°C). Que ce soit à la température de ventilation froide (température négative) ou à l'ambiant (+25°C), l'agent sera liquide. Les caractéristiques d'évaporation (courbe de saturation) indiquent que pour ces applications, nous sommes dans un état diphasique avec la présence de gouttes et de gaz : plus le mélange sera froid et plus l'équilibre sera déplacé vers la phase liquide. En phase gazeuse, le transport de l'agent dans chaque recoin du moteur ne pose pas de problème car il sera transporté par l'écoulement d'air de la ventilation. Or, en phase liquide, le transport efficace de l'agent sous forme de gouttes est plus complexe : si les gouttes sont trop grosses, elles tendront à avoir une trajectoire balistique et n'atteindront pas toutes les zones feux du moteur. Par conséquent, l'optimisation de l'atomisation de l'agent devient un paramètre central pour la conception du système de protection des incendies. Dans le contexte du projet, on étudie une technologie appelée atomisation effervescente. Le principe est de venir dissoudre un gaz (dans notre cas du dioxyde de carbone, CO2), dans l'agent liquide Novec1230. Plusieurs adaptations de cette technologie sont requises pour améliorer les performances de l'agent tel que son atomisation et son transport. Le processus d'atomisation effervescente est une technique d'atomisation diphasique prometteuse qui offre des améliorations potentielles en termes de qualité d'atomisation du fluide et de réduction de pression d'utilisation. L'objectif de ce projet est de conduire des recherches expérimentales sur le processus d'atomisation effervescente afin de prédire quels sont les paramètres clés qui influencent l'atomisation. / Fires are one of the most formidable risks in aviation because of the difficulties to fight them once airbone, as for example in confined spaces where the spread can be very fast. Halon1301 has been used for more than 50 years as extinguishing agent for aircraft engines, APU (Auxiliary Power Unit) and cargo fire protection. Halon1301 has specific properties for systems of fires engines protection. It has a low boiling point and high vapor pressure, which facilitates the mixture of the agent with the ventilation air in fire areas. In addition, its boiling point at -57,8°C and its ability to vaporize throughout the discharge are desirable physical properties. Because of changes in environmental regulation, it is necessary to replace Halon1301, the extinguishing agent currently present on aircraft engines fire protection systems. The use of this fluid has been banned by the Montreal (1994) and Kyoto (1998) protocols in industry, with the intent to reduce substances that deplete the ozone layer as well as greenhouse gases. Exemptions established by the European environmental Commission exist and are applied to the aeronautics field due to the lack of alternatives. For several years, Airbus has been working on the replacement of Halon1301 for engines and APU fire protection systems. Since 2003, several alternative agents to the Halon1301 have been identified. This study is dedicated to a fluid that appears as an environmentally friendly alternative: Novec1230. The most important difference between Halon1301 and Novec1230 is their physical phase. Indeed, Halon1301 is in gaseous state at all relevant conditions, while Novec1230 is a liquid below +49,2°C. At the cold temperature ventilation (negative temperature) or at ambient (+25°C), the agent will be liquid. The characteristics of evaporation (saturation curve) show that for these applications, we are in a two-phase flow with the presence of drops and gas. Gas-phase transport agent in every engine area is not a problem because it will be transported by the ventilation air flow. However, in the liquid phase, the efficient transport of the agent in the form of drops is more complex: If the drops are too large, they will tend to have a ballistic trajectory and will not reach all areas the engine. Therefore, the optimization of atomization of the agent becomes a central parameter for the design of the fire protection system. In the context of this project, a technology called effervescent atomization was considered. The principle is to dissolve a gas (in our case carbon dioxide, CO2), in the liquid agent Novec1230. Many adaptations of this technology are required to improve the performance of the atomization and subsequently the transport of the fire-extinguishing agent. The effervescent atomization process is a promising technology that offers potential improvements in terms of quality of atomization of the fluid and reduction of operating pressure. The goal of this project is to conduct theoretical and experimental research on the effervescent atomization process to identify the key parameters that influence the atomization.

Page generated in 0.1016 seconds