Return to search

Resolução de problemas da pré-álgebra e álgebra para fundamental II do ensino básico com auxílio do modelo de barras

Made available in DSpace on 2016-06-02T20:02:57Z (GMT). No. of bitstreams: 1
6507.pdf: 2675622 bytes, checksum: 1fa2e1a89f27433883070d1a6ede575e (MD5)
Previous issue date: 2014-10-17 / The difficulties in learning and teaching of algebra can be detected in the school cycle 4 (8th and 9th grades) of the Elementary School II and throughout High School, such difficulties being present in all Brazilian schools. These difficulties arise from an institutional failure, in others words, in the transition from arithmetic to algebra, in the phase of pre-algebra which occurs at cycle 3 ( 6th and 7th grades) of the Elementary School II. When this transition is unsatisfactory this compromises the subsequent studies making the students feel not motivated in learning the content of algebra. Therefore, in this research project we planned and executed 6 (six) activities based on the methodology of Problem Solving based on the phases proposed by George Polya, along with the methodology of the Bar Model from Singapore Mathematics. The activities were carried out in seventh grade classrooms of Elementary School II of Instituto Educacional Estilo , Campinas, SP. The results of this dissertation suggests to teachers of Elementary School II didactical sequences of activities that they can use and enjoy in classroom practices, so that they can improve also their teaching and learning, contributing to the development of the students. With the objective of achieving a satisfactory transition from arithmetic to algebra, the activities were developed and based on problems solving, and then analyzed critically using the Problem Solving steps. After 6 (six) activities, we applied a diagnostic evaluation in order to analyze the results and to check if the activities contributed to a meaningful learning of algebra. The dissertation presents a theoretical study about teaching and learning algebra as well as a study on the methodologies of Problem Solving in classroom practice and Bar Model from Singapore Mathematics. / As dificuldades na aprendizagem e no ensino da álgebra podem ser constatadas no ciclo 4 (8º Ano e 9º Ano) do Ensino Fundamental II e também em todo o Ensino Médio, tais dificuldades estão presentes em todas as escolas brasileiras. Essas dificuldades são decorrentes de uma falha na introdução, ou seja, na transição da aritmética para a álgebra, a pré-álgebra que ocorre no final do ciclo 3 (6º Ano e 7º Ano) do Ensino Fundamental II, já que feita de maneira não satisfatória pode comprometer as aulas seguintes fazendo com que os alunos se sintam desmotivados a aprenderem o conteúdo de álgebra. Deste modo foram planejadas e executadas 6 (seis) atividades utilizando a metodologia de Resolução de Problemas seguindo as etapas de George Polya, juntamente com a metodologia do Modelo de Barras segundo a Filosofia da Matemática de Singapura. As atividades foram aplicadas em duas turmas do sétimo ano do Ensino Fundamental II, no colégio Instituto Educacional Estilo, Campinas, SP. O trabalho desenvolvido nesta dissertação proporciona aos professores do Ensino Fundamental II e Ensino Médio uma sequência didática, que podem utilizar e aproveitar em suas aulas de forma que possam também melhorar em suas práticas de ensino e aprendizagens, de maneira a contribuir para o desenvolvimento de seus alunos. Com o objetivo de realizar uma transição satisfatória da aritmética para álgebra, as atividades foram elaboradas e baseadas na resolução de problemas, e depois analisadas criticamente por meio das etapas de resolução. Após as 6 (seis) atividades, aplicamos uma avaliação diagnóstica de forma a analisar os resultados para verificar se as atividades contribuíram com significado para uma aprendizagem da álgebra. O trabalho apresenta um estudo teórico sobre o ensino e aprendizagem da álgebra e também apresenta um estudo sobre as metodologias desenvolvidas no trabalho, Resolução de Problemas e Modelo de Barras segundo a Filosofia da Matemática de Singapura.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/4473
Date17 October 2014
CreatorsQueiroz, Jonas Marques dos Santos
ContributorsBaldin, Yuriko Yamamoto
PublisherUniversidade Federal de São Carlos, Programa de Pós-graduação em Ensino de Ciências Exatas, UFSCar, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds