I develop an analytically tractable model of dynamic force spectroscopy by considering the forced escape of a Brownian particle out of a potential well, along a one-dimensional reaction pathway. I compute explicit expressions for pertinent experimental observables, such as average bond lifetimes and rupture force distributions. The results generalize conventional quasistatic theories to arbitrary forces and loading rates, thus covering the whole range of conditions found in experiments and all-atom simulations. The theory is extended to so-called catch-slip bonds that play an important role in biology, and to “hidden” degrees of freedom, which may bear significantly on the observed bond kinetics at high loading rates.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:15919 |
Date | 27 July 2017 |
Creators | Bullerjahn, Jakob Tómas |
Contributors | Kroy, Klaus, Hummer, Gerhard, Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds