Return to search

Teoremas de (H,G)-coincidências para variedades e classificação global de singularidades isoladas em dimensões (6,3) / (H,G)-coincidence theorems for manifolds and global classification of isolated singularities in dimensions (6,3)

Este trabalho é constituido por duas partes. Na primeira parte, obtivemos algumas generalizações do clássico Teorema de Borsuk-Ulam em termos de (H,G)-coincidências. Na segunda parte, estendemos a caracterização dos germes de aplicações triviais, em codimensão 3, pelas fibrações de Milnor iniciada por Church e Lamotke em [11]. Usamos essa caracterização na classificação global de singularidades isoladas em dimensões (6, 3) / This work consists of two parts. In the first part, we obtain some generalizations of the classical Borsuk-Ulam Theorem in terms of (H,G)-coincidences. In the second part, we extend the characterization of trivial map germs, in codimension 3, by the Milnor fibrations started by Church and Lamotke in [11]. We use this characterization in the global classification of isolated singularities in dimensions (6, 3)

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-10062013-161959
Date28 March 2013
CreatorsTaciana Oliveira Souza
ContributorsDenise de Mattos, Louis Funar, Daciberg Lima Goncalves, Thiago de Melo, Pedro Luiz Queiroz Pergher, Raimundo Nonato Araújo dos Santos
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds