Return to search

Predicting comfort in autonomous driving from vibration measurements using machine learning models / Komfort förutsägelse i självkörande bilar med avnändning av maskininlärning metoder

Highly automated driving is approaching reality at a high speed. BMW is planningto put its first autonomous driving vehicle on the road already by 2021. The path torealising this new technology is however, full of challenges. Not only the transverseand longitudinal dynamic vehicle motion play an important role in experiencedcomfort but also the requirements and expectations of the occupants regarding thevertical dynamic vibration behaviour. Especially during long trips on the motorwaywhere the so far active driver becomes the chauffeured passenger, who reads, worksor sleeps in his newly gained time. These new use-cases create new requirements forthe future design of driving comfort which are yet to be fully discovered.This work was carried out at the BMW headquarters and had the aim to usedifferent machine learning models to investigate and identify patterns between thesubjective comfort values reported by participants in a study, on a comfort scale of 1-7 and the mechanical vibrations that they experienced, measured inm/s2. The datawas collected in a previous independent study and statistical methods were used toinsure the quality of the data. A comparison of the ISO 2631-1 comfort ratings andthe study’s findings is done to understand the need for a more sophisticated model to predict comfort in autonomous driving. The work continued by investigating different dimensionality reduction methods and their influence on the performance of the models. The process used to build, optimise and validate neural networks and other models is included in the method chapter and the results are presented. The work ends with a discussion of both the prediction results and the modelsre-usability. The machine learning models investigated in this thesis have shown great po-tential for detecting complex pattern that link feelings and thoughts to mechanical variables. The models were able to predict the correct level of comfort with up to50% precision when trying to predict 6 or 7 levels of comfort. When divided into high versus low discomfort, i.e. predicting one of two comfort levels, the models were able to achieve a precision of up to 75.4%.Excluded from this thesis is the study of differences in attentive vs inattentive state when being driven in an autonomous driving vehicle. It became clear shortly before the start of this work, that the experiment that yielded the data used for it failed to find a statistically significant difference between the two states. / Självkörande bilar är snart inte längre en dröm utan en mycket sann verklighet. År 2021 planerar BMW att släppa ut sin första autonoma bil på vägarna. Dock är vägen till att förverkliga denna nya teknik full av utmaningar. Utöver den tvärgående och längsgående dynamiska styrningen av fordonet, så spelar även passagerarens förväntningar på det vertikala dynamiska vibrationsbeteendet en växande roll. Speciellt under långa resor på motorvägen där den för nuvarande aktiva föraren blir passagerare, som läser, arbetar eller sover under sin nyvunna tid. De nya användarsenarierna ställer i sin tur nya krav på bilens komfort. Krav som inte har blivit hittills utförligt undersäkta, fastän de kan komma att spela en stor roll i teknikens framgång.Detta examensarbete genomfördes hos BMW:s huvudkontor i Tyskland och hade som mål att undersöka olika maskininlärningsmodeller och deras förmåga att identifiera mönster mellan de subjektiva komfortvärden som rapporterats av deltagarna i en studie, givna på skala 1-7, och de mekaniska vibrationerna som de upplevde mätta i m/s^2. Uppgifterna samlades in i en tidigare oberoende studie. Statistiska metoder användes för att säkerställa datakvaliteten. I detta arbeter har en jämförelse mellan ISO 2631-1-komfortbedömningar och undersökningsresultaten gjorts för att förstå behovet av en mer sofistikerad komfortstandard för att objektifera komfort i självkörande bilar. Arbetet fortsatte med att undersöka olika metoder för att minska datadimensionerna och deras inflytande på modellernas prestanda. Processen som används för att bygga, optimera och validera neurala nätverk och andra modeller är inkluderad i metoddelen och resultaten är presenterade och förklarade därefter. Arbetet avslutas med en diskussion kring både resultatets validitet och modellernas användbarhet.De maskininlärningsmodeller som undersöktes i detta examensarbete har visat stor potential för att upptäcka komplexa mönster som kopplar känslor och tankar till mekaniska variabler. Modellerna kunde förutsäga rätt komfortnivå med upp till 50% precision när 6 eller 7 nivåer av komfort användes. Vid uppdelning i hög mot låg komfort, dvs att kunna förutsäga en av två komfortnivåer, kunde modellerna uppnå en precision på upp till 75.4%.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-299355
Date January 2021
CreatorsAsarar, Kate
PublisherKTH, Fordonsdynamik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2021:033

Page generated in 0.0065 seconds