Big Data workflows are composed of multiple orchestration steps that perform different data analytics tasks. These tasks process heterogeneous data using various computing and storage resources. Due to the diversity of application domains, involved technologies, and complexity of data sets, the design and implementation of Big Data workflows require the collaboration of domain experts and technical experts. However, existing tools are too technical and cannot easily allow domain experts to participate in the process of defining and executing Big Data workflows. Moreover, the majority of existing tools are designed for specific applications such as bioinformatics, computational chemistry, and genomics. They are also based on specific technology stacks that do not provide flexible means of code reuse and maintenance. This thesis presents the design and implementation of a Big Data workflow solution based on the use of a domain-specific language (DSL) for hiding complex technical details, enabling domain experts to participate in the process definition of workflows. The workflow solution uses a combination of software container technologies and message-oriented middleware (MOM) to enable highly scalable workflow execution. The applicability of the solution is demonstrated by implementing a prototype based on a real-world data workflow. As per performed evaluations, the proposed workflow solution was evaluated to provide efficient workflow definition and scalable execution. Furthermore, the results of a set of experiments were presented, comparing the performance of the proposed approach with Argo Workflows, one of the most promising tools in the area of Big Data workflows. / Big Data-arbetsflöden består av flera orkestreringssteg som utför olika dataanalysuppgifter. Dessa uppgifter bearbetar heterogena data med hjälp av olika databehandlings- och lagringsresurser. På grund av stora variationen av tillämpningsområden, den involverade tekniken, och komplexiteten hos datamängderna, kräver utformning och implementering av Big Data-arbetsflöden samarbete mellan domänexperter och tekniska experter. Befintliga verktyg är dock för tekniska och vilket försvårar för domänexperter att delta i processen att definiera och genomföra Big Data-arbetsflöden. Dessutom är majoriteten av befintliga verktyg utformade för specifika tillämpningar, som bioinformatik, beräkningskemi och genomik. Verktygen är också baserade på specifika teknikstackar som inte erbjuder flexibla metoder för att kunna underhålla och återanvända kod. Denna avhandling ämnar att presentera design och implementering av en Big Data-arbetsflödeslösning som utnyttjar ett domänspecifikt språk (DSL) för att dölja komplexa tekniska detaljer, vilket gör det möjligt för domänexperter att delta i processdefinitionen av arbetsflöden. Arbetsflödeslösningen använder en kombination av mjukvaruutrustningsteknik och meddelande-orienterad mellanvara (MOM) för att möjliggöra en mer skalbar körning av arbetsflöden. Tillämpningslösningen demonstreras genom att implementera en prototyp baserad på ett verkligt dataflöde. Efter en granskning av de genomförda testerna modifierades den föreslagna arbetsflödeslösningen för att uppnå en effektiv arbetsflödesdefinition och skalbar körning. Dessutom presenteras resultaten av en uppsättning experiment där man jämför skalbarheten för det föreslagna tillvägagångssättet med Argo Workflows, ett av de mest lovande verktygen inom Big Data-arbetsflöden
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-285955 |
Date | January 2020 |
Creators | Dejene Dessalk, Yared |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2020:831 |
Page generated in 0.0025 seconds