[Truncated abstract] Mutations in the skeletal muscle -actin gene (ACTA1) have been shown to be one cause of a broad group of muscle disorders all termed the congenital myopathies. Over 170 different mutations have now been identified across all 6 coding exons of ACTA1 in patients presenting with muscle weakness and any one or more of the following histopathological features: nemaline rods, intranuclear rods, fibre-type disproportion, excess of thin filaments and central cores. While the identification of the causative gene has been of great comfort for affected patients and their families, with pre-natal genetic testing becoming available, the ultimate aim is to develop a therapy for these disorders. Of the therapies currently being explored for the muscular dystrophies, up-regulation of an alternative gene seemed to be one of the most promising avenues for treatment of the ACTA1 diseases. Up-regulation of utrophin, the foetal homologue of dystrophin, has been shown to be a promising therapy for the treatment of Duchenne muscular dystrophy. The main aim of my research was to determine whether up-regulation of cardiac -actin, the predominant -actin expressed in foetal skeletal muscle and in the adult heart, could be used as a therapy for the ACTA1 diseases. A proof-of-concept experiment was performed whereby skeletal muscle -actin knock-out (KO) mice (all of which die by postnatal day 9) were crossed with transgenic mice over-expressing cardiac -actin (known as Coco mice) in postnatal skeletal muscle. ... While patients that are ACTA1 nulls have been identified in a number of mainly consanguineous populations, the majority of ACTA1 mutations result in dominant disease in which the mutant protein interferes with the function of the wild-type skeletal muscle -actin. Research described in this thesis also focuses on characterizing two transgenic mouse models of dominant ACTA1 disease at the ultra-structural, cellular and functional level; this is the first step towards a proof-of-concept experiment to determine whether cardiac -actin up-regulation can dilute out the pathogenesis of dominant ACTA1 disease. It has long been noted that patients with ACTA1 disease do not have ophthalmoplegia, even in the most-severely affected individuals. Protein analysis performed on extraocular muscle (EOM) biopsies obtained from humans, sheep and pigs showed that the EOMs co-express cardiac and skeletal muscle -actin, with cardiac -actin comprising 70 % of the striated -actin pool. Thus we propose that sparing of the EOMs in ACTA1 disease is at least in part due to cardiac -actin diluting out the pathogenesis associated with expression of the mutant skeletal muscle -actin. This finding provides further support for the hypothesis that dilution of mutant skeletal muscle -actin in dominant ACTA1 disease by up-regulation of cardiac -actin may be a viable therapy for this group of devastating muscle diseases. The research contained herein has advanced the understanding of the pathobiology of skeletal muscle -actin diseases and provides strong evidence in support of cardiac -actin up-regulation as a promising therapy for these diseases.
Identifer | oai:union.ndltd.org:ADTP/281368 |
Date | January 2009 |
Creators | Ravenscroft, Gianina |
Publisher | University of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia. Centre for Medical Research |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Gianina Ravenscroft, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.0021 seconds