Return to search

Distribuições misturas de escala skew-normal : estimação e diagnostico em modelos lineares / Scale mixtures of skew-normal distribuitions : estimation and diagnostics for linear models

Orientadores: Filidor E. Vilca Labra, Victor Hugo Lachos Davila / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-14T22:06:24Z (GMT). No. of bitstreams: 1
Zeller_CamilaBorelli_D.pdf: 2738820 bytes, checksum: d40d3df77a4b5d44de0f48a8f8afed01 (MD5)
Previous issue date: 2009 / Resumo: Neste trabalho, estudamos alguns aspectos de estimação e diagnóstico de influência local (Cook, 1986) em modelos lineares, especificamente no modelo de regressão linear, no modelo linear misto e no modelo de Grubbs sob a classe de distribuições assimétricas misturas de escala skew-normal (SMSN) (Branco & Dey, 2001). Esta família de distribuições tem como membros particulares as versões simétrica e assimétrica das distribuições t-Student, slash e normal contaminada, todas com caudas mais pesadas que a distribuição normal, A estimação dos parâmetros será via o algoritmo EM (Dempster et al, 1977) e a análise de diagnóstico será baseada na técnica de dados aumentados que usa a esperança condicional da função log-verossimilhança dos dados aumentados (função-Q) proveniente do algoritmo EM, como proposta por Zhu & Lee (2001) e Lee & Xu (2004). Assim, pretendemos contribuir positivamente para desenvolvimento da área dos modelos lineares, estendendo alguns resultados encontrados na literatura, por exemplo, Pinheiro et al (2001), Arellano-Valle et aí (2005), Osório (2006), Montenegro et al (2009a), Montenegro et al (2009b), Osório et al (2009), Lachos et aí (2010), entre outros. / Abstract: In this work, we study some aspects of the estimation and the diagnostics based on the local influence (Cook, 1986) in linear models under the class of scale mixtures of the skew-normal (SMSN) distribution, as proposed by Branco & Dey (2001). Specifically, we consider the linear regression model, the linear mixed model and the Grubbs' measurement error model. The SMSN class of distributions provides a useful generalization of the normal and the skew-normal distributions since it covers both the asymmetric and heavy-tailed distributions such as the skew-t, the skew-slash, the skew-contaminated normal, among others. The local influence analysis will be based on the conditional expectation of the complete-data log-likelihood function (function-Q) from the EM algorithm (Dempster et al, 1977) ), as proposed by Zhu & Lee (2001) and Lee & Xu (2004). We believe that the results of our work have contributed positively to the development of this area of linear models, since we have extended some results from the works of Pinheiro et al. (2001), Arellano-Valle et al. (2005), Osorio (2006), Montenegro et al. (2009a), Montenegro et al. (2009b), Osorio et al. (2009), Lachos et al. (2010), among others. / Doutorado / Método Estatístico / Doutor em Estatística

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/307084
Date14 August 2018
CreatorsZeller, Camila Borelli
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Lachos Dávila, Víctor Hugo, 1973-, Vilca Labra, Filidor Edilfonso, 1964-, Ferrari, Silvia Lopes de Paula, Bolfarine, Heleno, Galea, Manuel, Garcia, Nancy Lopes
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Estatística
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Format136p. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds