Return to search

Screw Hole Detection in Industrial Products using Neural Network based Object Detection and Image Segmentation : A Study Providing Ideas for Future Industrial Applications / Skruvhålsdetektering på Industriella Produkter med hjälp av Neurala Nätverksbaserade Objektdetektering och Bildsegmentering : En Studie som Erbjuder Ideér för Framtida Industriella Applikationer

This project is about screw hole detection using neural networks for automated assembly and disassembly. In a lot of industrial companies, such as Ericsson AB, there are products such as radio units or filters that have a lot of screw holes. Thus, the assembly and disassemble process is very time consuming and demanding for a human to assemble and disassemble the products. The problem statement in this project is to investigate the performance of neural networks within object detection and semantic segmentation to detect screw holes in industrial products. Different industrial models were created and synthetic data was generated in Blender. Two types of experiments were done, the first one compared an object detection algorithm (Faster R-CNN) with a semantic segmentation algorithm (SegNet) to see which area is most suitable for hole detection. The results showed that semantic segmentation outperforms object detection when it comes to detect multiple small holes. The second experiment was to further investigate about semantic segmentation algorithms by adding U-Net, PSPNet and LinkNet into the comparison. The networks U-Net and LinkNet were the most successful ones and achieved a Mean Intersection over Union (MIoU) of around 0.9, which shows that they have potential for further development. Thus, conclusions draw in this project are that segmentation algorithms are more suitable for hole detection than object detection algorithms. Furthermore, it shows that there is potential in neural networks within semantic segmentation to detect screw holes because of the results of U-Net and LinkNet. Future work that one can do is to create more advanced product models, investigate other segmentation networks and hyperparameter tuning. / Det här projektet handlar om skruvhålsdetektering genom att använda neurala nätverk för automatiserad montering och demontering. I många industriföretag, såsom Ericsson AB, finns det många produkter som radioenheter eller filter som har många skruvhål. Därmed, är monterings - och demonteringsprocessen väldigt tidsfördröjande och krävande för en människa att montera och demontera produkterna. Problemformuleringen i detta projekt är att undersöka prestationen av olika neurala nätverk inom objekt detektering och semantisk segmentering för skurvhålsdetektering på indutriella produkter. Olika indutriella modeller var skapade och syntetisk data var genererat i Blender. Två typer av experiment gjordes, den första jämförde en objekt detekterings algoritm (Faster R-CNN) med en semantisk segmenterigs algoritm för att vilket område som är mest lämplig för hål detektering. Resultaten visade att semantisk segmentering utpresterar objekt detektering när det kommer till att detektera flera små hål. Det andra experimentet handlade om att vidare undersöka semantiska segmenterings algoritmer genom att addera U-Net, PSPNet och LinkNet till jämförelsen. Nätverken U-Net och PSPNet var de mest framgångsrika och uppnåde en Mean Intersection over Union (MIoU) på cirka 0.9, vilket visar på att de har potential för vidare utveckling. Slutsatserna inom detta projekt är att semantisk segmentering är mer lämplig för hål detektering än objekt detektering. Dessutom, visade sig att det finns potential i neurala nätverk inom semantisk segmentering för att detejtera skruvhål på grund av resultaten av U-Net och LinkNet. Framtida arbete som man kan göra är att skapa flera avancerade produkt modeller, undersöka andra segmenterisk nätverk och hyperparameter tuning.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-308443
Date January 2022
CreatorsMelki, Jakob
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:6

Page generated in 0.0031 seconds