Return to search

Effect of heat-treatment on the thermal and mechanical stability of Ni/Al2O3 nanocrystalline coatings

Yes / Heat-treatment is a frequently used technique for modifying the physical and chemical properties of materials. In this study, the effect of heat-treatment on the mechanical properties, thermal stability and surface morphology of two types of electrodeposited coatings (pure-Ni and Ni/Al2O3) were investigated. The XRD analyses showed that the crystal structure of the as-deposited coating changes from slightly amorphous to crystalline as the heat-treatment temperature increases. The heat-treatment of both the pure-Ni and the Ni/Al2O3 coating caused an increase of the grain size within the coatings. However, the unreinforced Ni coating experienced a faster growth rate than the Ni/Al2O3 coating, which resulted in a larger average grain size. The temperature-driven changes to the microstructure of the coatings caused a reduction in the hardness and wear resistance of the coatings. The presence of nanoparticles within the Ni/Al2O3 coating can successfully extend the operational temperature range of the coating to 473 K by pinning grain boundaries.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/18198
Date25 November 2020
CreatorsCooke, Kavian O., Khan, T.I., Shar, Muhammad A.
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, Published version
Rights(c) 2020 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/)

Page generated in 0.0014 seconds