La généralisation des communications numériques (téléphonie mobile, courrier électronique, commerce électronique...) rend nécessaire la mise au point de systèmes dont la confidentialité des informations est garantie de manière absolue. L'utilisation des lois de la mécanique quantique comme moyen de cryptage répond à ce critère. Bien que les physiciens théoriciens aient commencé à réfléchir sur ce type de cryptage depuis les années 1970, les dispositifs effectivement utilisables et industrialisables à grande échelle ne sont pas encore disponibles. Parmi les dispositifs qu’il convient de développer et maîtriser, les sources de lumières capables de générer des photons à l’unité tiennent une place centrale. Une des principales difficultés rencontrées dans leur mise au point réside dans la nécessité d’atteindre une efficacité de collection de la lumière émise proche de l’unité. La solution généralement proposée consiste à maitriser leur environnement électromagnétique à l'aide de résonateurs optiques miniaturisés à l’échelle de la longueur d’onde. On peut ainsi bénéficier d'effets d’électrodynamique quantique, tel que l'effet Purcell, pour améliorer, par exemple, la dynamique et/ou la directivité d'émission des photons. La réalisation pratique de sources de photons n'a été rendue possible que par les progrès des nanotechnologies. L'utilisation de la technologie des semi-conducteurs est la voie prometteuse choisie dans ce travail, dans l'objectif de développer des composants miniaturisés et facilement intégrables, à la base d’une nouvelle génération de résonateurs optiques de taille ultime. Dans ce travail de thèse, nous proposons de développer une source de photons uniques utilisant des boites quantiques InAs -comme émetteurs uniques- incluses dans une membrane GaAs dans laquelle on réalise un résonateur optique consistant en une cavité à cristal photonique membranaire. On exploite la technologie des cristaux photoniques afin d’utiliser un unique mode optique résonant, dit mode de Bloch lent non dégénéré, opérant au-dessus de la ligne de lumière. On exploite diverses méthodes numériques pour la conception et la simulation du comportement électromagnétique des dispositifs. Nous effectuons ainsi une ingénierie fine de modes optiques permettant : (1) d'optimiser le facteur de Purcell dans une hétérostructure photonique(puits photonique analogue des puits quantiques électroniques). Nous montrons que le report de cette cavité sur un miroir de Bragg entraîne le doublement du taux de collection des photons, ainsi que de la dynamique d’émission; (2) de contrôler la directivité d'émission du mode pour améliorer l’efficacité d'extraction /collection des photons. Une étude détaillée de l’ingénierie du diagramme de rayonnement est présentée permettant d’appréhender la physique et de prévoir les caractéristiques10de l’émission du mode. Nous montrons, notamment, que la présence du miroir de Bragg peut fortement modifier la directivité d’émission. Les développements technologiques effectués en vue d'obtenir des résonateurs photoniques de hautes qualités sont également exposés. A la longueur d’onde d’émission de 900nm, choisie pour une adaptation optimale aux caractéristiques des détecteurs, la période du cristal photonique nécessaire est de l’ordre de quelques centaines de nm. Les outils et les paramètres de technologie de fabrication (par exemple, calibration de l’épaisseur du masque dur et des paramètres d’exposition de la résine par lithographie électronique) sont exposés en détail. / The current demand of digital communications (mobile phones, email, e-commerce ...) requires the development of systems which can guarantee full confidentiality. The use of quantum mechanics laws as a way of encryption is considered as an efficient way to meet confidentiality requirements. While physicists have begun to think about this type of encryption since the 1970s, the practical devices with large scale manufacturability are not yet available. Among devices to be developed, light sources capable of generating photons per unit are the most promising. One of the main difficulties encountered in their development is the need to achieve a collection efficiency of the emitted light close to unity. The solution usually proposed is to control their electromagnetic environment using optical resonators miniaturized at the wavelength scale. Thus, we can benefit from quantum electrodynamics effects, as the Purcell effect, in order to improve for example the dynamics and/or the directivity of the emitted photons. The practical realization of photon sources has been made possible by advances in nanotechnology. The use of semiconductor technology is the promising way chosen in this work, in view of developing miniaturized and easily integrated components to lay foundations for a new generation of ultimate-size optical resonators. In this thesis, we propose to develop a single photon source using InAs/GaAs quantum dots -as single emitters - inserted in a GaAs membrane. The quantum dots are coupled to an optical resonator consisting in a photonic crystal cavity formed in the GaAs membrane. Use of the photonic crystal approach allows for the generation of a single-resonant-optical mode so called non degenerated slow Bloch mode, operating above the light line, hence providing efficient communication with free space. We employ various numerical methods for designing and simulating the electromagnetic behaviours of the devices. Thus, we perform a fine engineering of the optical modes in order to:(1) optimize the Purcell factor in a photonic heterostructure (where photonics wells are equivalent to electronic quantum wells). We show that the positioning of a Bragg mirror above the cavity results in a two-fold increase of the collection efficiency of photons, as well as of their emission dynamics;(2) control the directivity of the emission diagram, thus improving the efficiency of extraction/collection of photons. A detailed engineering study of the radiation pattern is presented in12order to predict the features of the emission diagram. We show in particular that the presence of the Bragg mirror may alter the directivity of the emission if its location is not properly optimized. Technological developments meant to result in high quality photonic resonators are described. A wavelength of 900nm of the emission is chosen for an optimal matching to the detector characteristics, which requires a period of the photonic crystal in the range of a few hundreds of nm. The tools and technological parameters of manufacturing (eg, calibration of the thickness of hard mask and exposure parameters of the resist by electron beam lithography) are detailed.
Identifer | oai:union.ndltd.org:theses.fr/2010ECDL0011 |
Date | 25 June 2010 |
Creators | Nedel, Patrick |
Contributors | Ecully, Ecole centrale de Lyon, Viktorovitch, Pierre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds