Return to search

THREE-DIMENSIONAL RECONSTRUCTION OF THE ALLOYING PROCESS OF GOLD-SILVER NANOPARTICLES BY SMALL-ANGLE X-RAY SCATTERING

Alloy nanoparticles have been extensively studied for decades. However, the synthesis and characterization of alloy nanoparticles are still posing significant challenges, leading to an increasing demand for in situ characterization techniques. Small-angle X-ray scattering (SAXS) is a powerful method for structural analysis of nanoparticles. As the SAXS signal is essentially the Fourier transform of the electron distribution, it provides structural information for the entire ensemble of nanoparticles. The development of SAXS has been facilitated by significant advances in synchrotron X-ray sources and data processing methods, leading to the development of the 3D-SAXS method, which enables the reconstruction of the 3D structures of particles from SAXS profiles.Although SAXS has the potential to be a powerful tool for investigating the internal structures of alloy nanoparticles, its application is hindered by the challenges posed by polydispersity, which can cause smearing effects that complicate the geometry recovery process. This dissertation presents a novel approach to overcome the problem of polydispersity in SAXS data analysis, thus demonstrating the utility of SAXS in investigating the internal electron density distributions of alloy nanoparticles.
In Chapter 2, the SharPy algorithm is introduced as a size-refocusing program that reduces the smearing effect caused by polydispersity in SAXS data. SharPy is based on a penalized iterative regression approach to fit the pair distance distribution function (PDDF) with an estimated size distribution. It can provide detailed information about the shape of nanoparticles from the smeared SAXS signal under various scenarios and conditions.
Chapter 3 investigates the simulated SAXS profiles of AuAg core-shell nanoparticles with varying size distribution, core-shell ratio, and degrees of alloying. It demonstrates the capability of SAXS in observing the electron density distribution of AuAg core-shell structures. These findings provide insights into the potential of SAXS as a reliable method for investigating the internal structures of alloy nanoparticles.
Chapter 4 focuses on synthesizing and characterizing AuAg nanoparticles. Their SAXS profiles and PDDF analysis demonstrate that SAXS can distinguish between homogeneous and core-shell nanoparticle structures. In this chapter, the SharPy algorithm is first-time applied to real experimental data, demonstrating its ability to reveal the core-shell structure from a polydisperse nanoparticle system.
Chapter 5 investigates the evolution of alloying AuAg nanoparticles through a combination of SAXS/PDDF analysis, 3D reconstruction, and molecular dynamics (MD) simulation. The study presents the 3D electron density distribution of alloying AuAg nanoparticles. The 3D reconstruction with electron density mapping provides a straightforward visualization of the electron density distribution pattern of the alloying AuAg nanoparticles.
The success of the SAXS experiment lies in the development of the 3D-SAXS pipeline, which involves the use of SharPy and 3D reconstruction programs, making 3D SAXS a promising alternative to electron microscopy for visualizing the morphology of nanoparticle systems. / Chemistry

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/8993
Date January 2023
CreatorsWu, Siyu, 0000-0002-0199-5471
ContributorsSun, Yugang, Dobereiner, Graham, Voelz, Vincent, Wu, Xifan, Sun, Yugang
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format169 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/8957, Theses and Dissertations

Page generated in 0.0152 seconds