’Flight’ is a program that uses flight mechanics to estimate the flight range of birds. This program, used by ornithologists, is only available for Windows OS. It requires manual imputation of body measurements and constants (one observation at a time) and this is time-consuming. Therefore, the first task is to implement the methods in R, a programming language that runs on various platforms. The resulting package named flying, has three advantages; first, it can estimate flight range of multiple bird observations, second, it makes it easier to experiment with different settings (e.g. constants) in comparison to Flight and third, it is open-source making contribution relatively easy. Uncertainty and global sen- sitivity analyses are carried out on body measurements separately and with various con- stants. In doing so, the most influential body variables and constants are discovered. This task would have been near impossible to undertake using ’Flight’. A comparison is made amongst the results from a crude partitioning method, generalized additive model, gradi- ent boosting machines and quasi-Monte Carlo method. All of these are based on Sobol’s method for variance decomposition. The results show that fat mass drives the simulations with other inputs playing a secondary role (for example mechanical conversion efficiency and body drag coefficient).
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-166248 |
Date | January 2020 |
Creators | Masinde, Brian |
Publisher | Linköpings universitet, Institutionen för datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds