Return to search

Application of real and functional analysis to solve boundary value problems.

This thesis is about using appropriate tools in functional analysis arid classical analysis to tackle the problem of existence and uniqueness of nonlinear partial differential equations. There being no unified strategy to deal with these equations, one approaches each equation with an appropriate method, depending on the characteristics of the equation.
The correct setting of the problem in appropriate function spaces is the first important part on the road to the solution. Here, we choose the setting of Sobolev spaces. The second essential part is to choose the correct tool for each equation.
In the first part of this thesis (Chapters 3 and 4) we consider a variety of nonlinear hyperbolic partial differential equations with mixed boundary and initial conditions. The methods of compactness and monotonicity are used to prove existence and uniqueness of the solution (Chapter 3). Finding a priori estimates is the main task in this analysis. For some types of nonlinearity, these estimates cannot be easily obtained, arid so these two methods cannot be applied directly. In this case, we first linearise the equation, using linear recurrence (Chapter 4).
In the second part of the thesis (Chapter 5), by using an appropriate tool in functional analysis (the Sobolev Imbedding Theorem), we are able to improve previous results on a posteriori error estimates for the finite element method of lines applied to nonlinear parabolic equations. These estimates are crucial in the design of adaptive algorithms for the method, and previous analysis relies on, what we show to be, unnecessary assumptions which limit the application of the algorithms. Our analysis does not require these assumptions.
In the last part of the thesis (Chapter 6), staying with the theme of choosing the most suitable tools, we show that using classical analysis in a proper way is in some cases sufficient to obtain considerable results. We study in this chapter nonexistence of positive solutions to Laplace's equation with nonlinear Neumann boundary condition. This problem arises when one wants to study the blow-up at finite time of the solution of the corresponding parabolic problem, which models the heating of a substance by radiation. We generalise known results which were obtained by using more abstract methods.

Identiferoai:union.ndltd.org:ADTP/217045
Date January 2002
CreatorsDuong, Thanh-Binh, mikewood@deakin.edu.au
PublisherDeakin University. School of Computing and Mathematics
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.deakin.edu.au/disclaimer.html), Copyright Thanh-Binh Duong

Page generated in 0.0018 seconds