A key factor of software architecting is the decision-making process. All phases of software development contain some kind of decision-making activities. However, the software architecture decision process is the most challenging part. To support the decision-making process, a research project named ORION provided a knowledge repository that contains a collection of decision cases. To utilize the collected data in an efficient way, eliciting correlations between decision cases needs to be automated. The objective of this thesis is to select appropriate method(s) for automatically detecting correlations between decision cases. To do this, an experiment was conducted using a dataset of collected decision cases that are based on a taxonomy called GRADE. The dataset is stored in the Neo4j graph database. The Neo4j platform provides a library of graph algorithms which allow to analyse a number of relationships between connected data. In this experiment, five Similarity algorithms are used to find correlated decisions, then the algorithms are analysed to determine whether the they would help improve decision-making. From the results, it was concluded that three of the algorithms can be used as a source of support for decision-making processes, while the other two need further analyses to determine if they provide any support.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-45248 |
Date | January 2019 |
Creators | Ahmed, Mohamed Ali |
Publisher | Mälardalens högskola, Akademin för innovation, design och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds