Spectrum sharing is possible, but lacks R & D support for practical solutions that satisfy both the incumbent and secondary or opportunistic users. The author found a lack of an openly available framework supporting experimental research on the performance of a Spectrum Access System (SAS) and propose to build an open-source Software Defined Radio (SDR) based framework. This framework will test different dynamic spectrum scenarios in a wireless testbed. This thesis presents our Spectrum Access System prototype, discusses the design choices and trade-offs and provides a proof of concept implementation. We show that an Internet-accessible CORNET test bed provides the ideal platform for developing and testing the SAS functionality and its building blocks and offerss the hardware and software as a community resource for research and education. This design provides the necessary interfaces for researchers to develop and test their SAS-related modules, waveforms and scenarios. / Master of Science / In this information age, the number of wireless devices is growing faster than the infrastructure required to make wireless communication possible. This creates a possibility of not having enough radio spectrum to keep up with this growing demand. To alleviate this issue, there is a need to research and find more ways of efficiently utilizing the current spectrum resources available. Dynamic spectrum allocation is one way forward to archiving this goal. Frequency channels are assigned to devices based on prevailing conditions like device location and availability of channels that would cause low interference to other devices. Spectrum utilization is based on time, frequency and space with devices having the ability to hop to the best channel available. In this thesis, an open-source Spectrum Access System (SAS) was created as a platform through which dynamic spectrum allocation research can be done. The SAS is centralized management system that logs information about the prevailing spectrum usage, and in turn uses this information to dynamically allocate spectrum to devices and networks. This thesis shows how it was implemented, its current performance, and the steps that different researchers can take to add their own functionalities.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/85629 |
Date | 01 November 2018 |
Creators | Kikamaze, Shem |
Contributors | Electrical Engineering, Dietrich, Carl B., Reed, Jeffrey H., Dhillon, Harpreet Singh |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.002 seconds