• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Context-Aware Dynamic Spectrum Access System for Spectrum Research and Development

Kumar, Saurav 03 January 2024 (has links)
Our hunger for data has grown tremendously over the years which has led to a demand for the increase in the available radio spectrum for communications. The Federal Communications Commission in the United States allowed for the sharing of the CBRS band (3550-3700 MHz) a few years ago. Since then, research has been done by both industry and academia to identify similar opportunities in other radio bands as well. This research is, however, being hampered due to a lack of experimental frameworks where the various aspects of spectrum sharing can be studied. To this end, we propose to develop an open-source spectrum access system that incorporates context awareness and multi-band operational support and serves as an RandD tool for the research community. We have developed a novel Prioritization Framework that takes the current operational context of each user into account to determine their relative priority, within or outside their user class/group, for transmission in the network. We also introduce a Policy Engine for the configuration and management of dynamic policies (or rules) for defining the relationships between the various forms of context information and their relative impact on a user's overall priority. We have performed several experiments to show how context awareness impacts the spectrum sharing efficiency and quality of service. Due to its modular and extensible nature, we expect that this tool will be used by researchers and policy-makers to implement their own policies and algorithms and test their efficacy in a simulated radio environment. / Master of Science / Over the years, the advancements in the internet and communication technology have made us more and more data-hungry. Consequently, the electromagnetic spectrum on which data is transmitted has become a sparse resource. Governments worldwide are working together with academia and industry to find the most efficient utilization of this resource. If the current users of protected spectrum could share their bands with other licensed or opportunistic users, then a tremendous amount of spectrum could be freed up for public and private use. To facilitate rapid research and development in this field, this thesis proposes the development of an open-source, modular, and extensible Context-Aware Dynamic Spectrum Access System. In this system, we explore the usage of several traditional and novel context information in spectrum allocation, which in turn helps us improve the efficiency and resiliency of spectrum management while ensuring that incumbent users are not adversely affected by other licensed or unlicensed users. We develop cognitive modules for context-based prioritization of users for allocation through a novel Prioritization Framework and for enabling the use of dynamic policies or rules (governing spectrum allocation) instead of static policies that most systems use today. We simulate several operational scenarios and depict our tool's performance in them. Through our experiments and discussions, we highlight the significance of this tool for researchers, policy-makers, and regulators for studying spectrum sharing in general, and context-aware, dynamic policy-based spectrum sharing in particular.
2

Primary User Obfuscation in an Incumbent Informed Spectrum Access System

Makin, Cameron 24 June 2021 (has links)
With a growing demand for spectrum availability, spectrum sharing has become a high-profile solution to overcrowding. In order to enable spectrum sharing between incumbent/primary and secondary users, incumbents must have spectrum protection and privacy from malicious new entrants. In this Spectrum Access System (SAS) advancement, Primary Users (PUs) are obfuscated with the efforts of the SAS and the cooperation of obedient new entrants. Further, the necessary changes to the SAS to support this privacy scheme are exposed to suggest improvements in PU privacy, Citizens Broadband Radio Service Device (CBSD)-SAS relations, and punishment for unauthorized transmission. Results show the feasibility for PU obfuscation with respect to malicious spectrum sensing users. Simulation results indicate that the obfuscation scheme can deliver location and frequency occupation privacy with 75% and 66% effectiveness respectively in a 100% efficient spectrum utilization oriented obfuscation scheme. A scheme without spectrum utilization constraint shows up to 91% location privacy effectiveness. Experiment trials indicate that the privacy tactic can be implemented on an open-source SAS, however environmental factors may degrade the tactic's performance. / Master of Science / With a growing demand for spectrum availability, wireless spectrum sharing has become a high-profile solution to spectrum overcrowding. In order to enable spectrum sharing between incumbent/primary (e.g.,federal communications, naval radar, users already grandfathered into the band) and secondary users (e.g., commercial communications companies), incumbents must have spectrum protection and privacy from malicious new entrants. In this Spectrum Access System (SAS) advancement, Primary Users (PUs) are obfuscated with the efforts of the incumbent informed SAS and the cooperation of obedient new entrants. Further, the necessary changes to the SAS to support this privacy scheme are exposed to suggest improvements in PU privacy, Citizens Broadband Radio Service Device (CBSD)-SAS relations, and punishment for unauthorized transmission. Results show the feasibility of PU obfuscation with respect to malicious spectrum sensing users. Simulation results indicate that the obfuscation tactic can deliver location and frequency occupation privacy with 75% and 66% effectiveness respectively in a 100% efficient spectrum utilization oriented obfuscation scheme. A scheme without spectrum utilization constraint shows up to 91% location privacy effectiveness. Experiment trials indicate that the privacy tactic can be implemented on an open-source SAS, however environmental factors may degrade the tactic's performance.
3

Spectrum Sharing: Overview and Challenges of Small Cells Innovation in the Proposed 3.5 GHz Band

Oyediran, David 10 1900 (has links)
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV / Spectrum sharing between Federal and commercial users is a technique proposed by the FCC and NTIA to open up the 3.5 GHz band for wireless broadband use and small cell technology is one of the candidates for its' realization. The traffic on small cells is temporal and their chances of interfering with other services in shared spectrum are limited. DoD has a documented requirement of 865 MHz by 2025 to support telemetry but only 445 MHz is presently available. DoD is conducting researches to realize test and evaluation spectrum efficient technology with the aim to develop, demonstrate, and evaluate technology components required to enable flight and ground test telemetry operations. This paper will provide an overview on spectrum sharing using small cell technology for LTE-Advanced and dynamic spectrum access would be briefly described. Research challenges for protocols and algorithms would be addressed for future studies.
4

Using Incumbent Channel Occupancy Prediction to Minimize Secondary License Grant Revocations

Ramanujachari, Divya 13 December 2018 (has links)
With commercial deployment of the Citizens Band Radio Service commencing in the last quarter of 2018, efforts are in progress to improve the efficiency of the Spectrum Access System (SAS) functions. An area of concern as identified in recent field trials is the timebound evacuation of unlicensed secondary users from a frequency band by the SAS on the arrival of an incumbent user. In this thesis, we propose a way to optimize the evacuation process by reducing the number of secondary spectrum grant revocations to be performed. The proposed work leverages knowledge of incumbent user spectrum occupancy pattern obtained from historical spectrum usage data. Using an example model trained on 48 hours of an incumbent user transmission information, we demonstrate prediction of future incumbent user spectrum occupancy for the next 15 hours with 94.4% accuracy. The SAS uses this information to set the time validity of the secondary spectrum grants appropriately. In comparison to a case where spectrum grants are issued with no prior knowledge, the number of revocations declines by 87.5% with a 7.6% reduction in channel utilization. Further, the proposed technique provides a way for the SAS to plan ahead and prepare a backup channel to which secondary users can be redirected which can reduce the evacuation time significantly. / Master of Science / Studies on spectrum occupancy show that, in certain bands, licensed incumbent users use the spectrum only for some time or only within certain geographical limits. The dynamic spectrum access paradigm proposes to reclaim the underutilized spectrum by allowing unlicensed secondary users to access the spectrum opportunistically in the absence of the licensed users. In the United States, the Federal Communications Commission (FCC) has identified 150 MHz of spectrum space from 3550-3700 MHz to implement a dynamic spectrum sharing service called the Citizens Broadband Radio Service (CBRS). The guiding principle of this service is to maximize secondary user channel utilization while ensuring minimal incumbent user disruption. In this study, we propose that these conflicting requirements can be best balanced in the Spectrum Access System (SAS) by programming it to set the time validity of the secondary license grants by taking into consideration the incumbent spectrum occupancy pattern. In order to enable the SAS to learn incumbent spectrum occupancy in a privacy-preserving manner, we propose the use of a deep learning model, specifically the long-short term memory (LSTM). This model can be trained by federal agencies on historical incumbent spectrum occupancy information and then shared with the SAS in a secure manner to obtain prediction information about possible incumbent activity. Then, using the incumbent spectrum occupancy information from the LSTM model, the SAS could issue license grants that would expire before expected arrival time of incumbent user, thus minimizing the number of revocations on incumbent arrival. The scheme was validated using simulations that demonstrated the effectiveness of this approach in minimizing revocation complexity.
5

Design, Deployment and Performance of an Open Source Spectrum Access System

Kikamaze, Shem 01 November 2018 (has links)
Spectrum sharing is possible, but lacks R & D support for practical solutions that satisfy both the incumbent and secondary or opportunistic users. The author found a lack of an openly available framework supporting experimental research on the performance of a Spectrum Access System (SAS) and propose to build an open-source Software Defined Radio (SDR) based framework. This framework will test different dynamic spectrum scenarios in a wireless testbed. This thesis presents our Spectrum Access System prototype, discusses the design choices and trade-offs and provides a proof of concept implementation. We show that an Internet-accessible CORNET test bed provides the ideal platform for developing and testing the SAS functionality and its building blocks and offerss the hardware and software as a community resource for research and education. This design provides the necessary interfaces for researchers to develop and test their SAS-related modules, waveforms and scenarios. / Master of Science / In this information age, the number of wireless devices is growing faster than the infrastructure required to make wireless communication possible. This creates a possibility of not having enough radio spectrum to keep up with this growing demand. To alleviate this issue, there is a need to research and find more ways of efficiently utilizing the current spectrum resources available. Dynamic spectrum allocation is one way forward to archiving this goal. Frequency channels are assigned to devices based on prevailing conditions like device location and availability of channels that would cause low interference to other devices. Spectrum utilization is based on time, frequency and space with devices having the ability to hop to the best channel available. In this thesis, an open-source Spectrum Access System (SAS) was created as a platform through which dynamic spectrum allocation research can be done. The SAS is centralized management system that logs information about the prevailing spectrum usage, and in turn uses this information to dynamically allocate spectrum to devices and networks. This thesis shows how it was implemented, its current performance, and the steps that different researchers can take to add their own functionalities.
6

Enabling CBRS experimentation and ML-based Incumbent Detection using OpenSAS

Collaco, Oren Rodney 03 July 2023 (has links)
In 2015, Federal Communications Commission (FCC) enabled shared commercial use of the 3.550-3.700 GHz band. A framework was developed to enable this spectrum-sharing capa- bility which included an automated frequency coordinator called Spectrum Access System (SAS). This work extends the open source SAS based on the aforementioned FCC SAS framework developed by researchers at Virginia Tech Wireless group, with real-time envi- ronment sensing capability along with intelligent incumbent detection using Software-defined Radios (SDRs) and a real-time graphical user interface. This extended version is called the OpenSAS. Furthermore, the SAS client and OpenSAS are extended to be compliant with the Wireless Innovation Forum (WINNF) specifications by testing the SAS-CBRS Base Station Device (CBSD) interface with the Google SAS Test Environment. The Environment Sensing Capability (ESC) functionality is evaluated and tested in our xG Testbed to verify its ability to detect the presence of users in the CBRS band. An ML-based feedforward neural net- work model is employed and trained using simulated radar waveforms as incumbent signals and captured 5G New Radio (NR) signals as a non-incumbent signal to predict whether the detected user is a radar incumbent or an unknown user. If the presence of incumbent radar is detected with an 85% or above certainty, incumbent protection is activated, terminating CBSD grants causing damaging interference to the detected incumbent. A 5G NR signal is used as a non-incumbent user and added to the training dataset to better the ability of the model to reject non-incumbent signals. The model achieves a maximum validation accuracy of 95.83% for signals in the 40-50 dB Signal-to-Noise Ratio (SNR) range. It achieves an 85.35% accuracy for Over the air (OTA) real-time tests. The non-incumbent 5G NR signal rejection accuracy is 91.30% for a calculated SNR range of 10-20 dB. In conclusion, this work advances state of the art in spectrum sharing systems by presenting an enhanced open source SAS and evaluating the newly added functionalities. / Master of Science / In 2015, Federal Communications Commission (FCC) enabled shared commercial use of the 3.550-3.700 GHz band. A framework was developed to enable this spectrum-sharing capability which included an automated frequency coordinator called Spectrum Access System (SAS). The task of the SAS is to make sure no two users use the same spectrum in the same location causing damaging interference to each other. The SAS is also responsible for prioritizing the higher tier users and protecting them from interference from lower tier users. This work extends the open source SAS based on the aforementioned FCC SAS framework developed by researchers at Virginia Tech Wireless group, with real-time environment sensing capability along with intelligent incumbent detection using Software-defined Radios (SDRs) and a real-time graphical user interface. This extended version is called the OpenSAS. Furthermore, the SAS client and OpenSAS are extended to be compliant with the Wireless Innovation Forum (WINNF) specifications by testing the SAS-CBRS Base Station Device (CBSD) interface with the Google SAS Test Environment. The Environment Sensing Capability (ESC) functionality is evaluated and tested in our xG Testbed to verify its ability to detect the presence of users in the CBRS band. The ESC is used to detect incumbent users (the highest tier) that do not inform the SAS about their use of the spectrum. An ML-based feedforward neural net- work model is employed and trained using simulated radar waveforms as incumbent signals and captured 5G New Radio (NR) signals as a non-incumbent signal to predict whether the detected user is a radar incumbent or an unknown user. If the presence of incumbent radar is detected with an 85% or above certainty, incumbent protection is activated, terminating CBSD grants causing damaging interference to the detected incumbent. A 5G NR signal is used as a non-incumbent user and added to the training dataset to better the ability of the model to reject non-incumbent signals. The model achieves a maximum validation accuracy of 95.83% for signals in the 40-50 dB Signal to-Noise Ratio (SNR) range. It achieves an 85.35% accuracy for Over the air (OTA) real-time tests. The non-incumbent 5G NR signal rejection accuracy is 91.30% for a calculated SNR range of 10-20 dB. In conclusion, this work advances state of the art in spectrum sharing systems by presenting an enhanced open source SAS and evaluating the newly added functionalities.
7

Spectrum Opportunity Duration Assurance: A Primary-Secondary Cooperation Approach for Spectrum Sharing Systems

Sohul, Munawwar Mahmud 05 September 2017 (has links)
The radio spectrum dependent applications are facing a huge scarcity of the resource. To address this issue, future wireless systems require new wireless network architectures and new approaches to spectrum management. Spectrum sharing has emerged as a promising solution to address the radio frequency (RF) spectrum bottleneck. Although spectrum sharing is intended to provide flexible use of the spectrum, the architecture of the existing approaches, such as TV White Space [1] and Citizen Broadband Radio Services (CBRS) [2], have a relatively fixed sharing framework. This fixed structure limits the applicability of the architecture to other bands where the relationship between various new users and different types of legacy users co-exist. Specifically, an important aspect of sharing that has not been explored enough is the cooperation between the resource owner and the opportunistic user. Also in a shared spectrum system, the users do not have any information about the availability and duration of the available spectrum opportunities. This lack of understanding about the shared spectrum leads the research community to explore a number of core spectrum sharing tasks, such as opportunity detection, dynamic opportunity scheduling, and interference protection for the primary users, etc. This report proposes a Primary-Secondary Cooperation Framework to provide flexibility to all the involved parties in terms of choosing the level of cooperation that allow them to satisfy different objective priorities. The cooperation framework allows exchange of a probabilistic assurance: Spectrum Opportunity Duration Assurance (SODA) between the primary and secondary operations to improve the overall spectrum sharing experience for both the parties. This capability will give the spectrum sharing architectures new flexibility to handle evolutions in technologies, regulations, and the requirements of new bands being transitioned from fixed to share usage. In this dissertation we first look into the regulatory aspect of spectrum sharing. We analyze the Federal Communications Commission's (FCC) initiatives with regards to the commercial use of the 150 MHz spectrum block in the 3.5 GHz band. This analysis results into a Spectrum Access System (SAS) architecture and list of required functionalities. Then we address the nature of primary-secondary cooperation in spectrum sharing and propose to generate probabilistic assurances for spectrum opportunities. We use the generated assurance to observe the impact of cooperation from the perspective of spectrum sharing system management. We propose to incorporate primary user cooperation in the auctioning and resource allocation procedures to manage spectrum opportunities. We also analyze the improvement in spectrum sharing experience from the perspective of the primary and secondary users as a result of cooperation. We propose interference avoidance schemes that involve cooperation to improve the achievable quality of service. Primary-secondary cooperation has the potential to significantly influence the mechanism and outcomes of the spectrum sharing systems. Both the primary and secondary operations can benefit from cooperation in a sharing scenario. Based on the priorities of the primary and secondary operations, the users may decide on the level of cooperation that they are willing to participate. Also access to information about the availability and usability of the spectrum opportunity will result in efficient spectrum opportunity management and improved sharing performance for both the primary and secondary users. Thus offering assurances about the availability and duration of spectrum opportunity through primary-secondary cooperation will significantly improve the overall spectrum sharing experience. The research reported in this dissertation is expected to provide a fundamental analytical framework for characterizing and quantifying the implications of primary-secondary cooperation in a spectrum sharing context. It analyzes the technical challenges in modeling different level of cooperation and their impact on the spectrum sharing experience. We hope that this dissertation will establish the fundamentals of the spectrum sharing to allow the involved parties to participate in sharing mechanisms that is suitable to their objective priorities. / PHD

Page generated in 0.09 seconds