Return to search

[en] FAST AND ACCURATE SIMULATION OF DEFORMABLE SOLID DYNAMICS ON COARSE MESHES / [pt] SIMULAÇÃO RÁPIDA E PRECISA DE DINÂMICA DE SÓLIDOS DEFORMÁVEIS EM MALHAS POUCO REFINADAS

[pt] Esta dissertação introduz um simulador híbrido inovador que combina um resolvedor de Equações Diferenciais Parciais (EDP) numérico de Elementos Finitos (FE) com uma Rede Neural de Passagem de Mensagens (MPNN) para realizar simulações de dinâmicas de sólidos deformáveis em malhas pouco refinadas. Nosso trabalho visa fornecer simulações precisas com um erro comparável ao obtido com malhas mais refinadas em discretizações FE,mantendo a eficiência computacional ao usar um componente MPNN que corrige os erros numéricos associados ao uso de uma malha menos refinada. Avaliamos nosso modelo focando na precisão, capacidade de generalização e velocidade computacional em comparação com um solucionador numérico de referência que usa malhas 64 vezes mais refinadas. Introduzimos um novo conjunto de dados para essa comparação, abrangendo três casos de referência numéricos: (i) deformação livre após um impulso inicial, (ii) alongamento e (iii)torção de sólidos deformáveis. Baseado nos resultados de simulação, o estudo discute as forças e fraquezas do nosso método. O estudo mostra que nosso método corrige em média 95,4 por cento do erro numérico associado à discretização, sendo até 88 vezes mais rápido que o solucionador de referência. Além disso, nosso modelo é totalmente diferenciável em relaçao a funções de custo e pode ser incorporado em uma camada de rede neural, permitindo que seja facilmente estendido por trabalhos futuros. Dados e código estão disponíveis em https://github.com/Kerber31/fast_coarse_FEM para investigações futuras. / [en] This thesis introduces a novel hybrid simulator that combines a numerical
Finite Element (FE) Partial Differential Equation solver with a Message
Passing Neural Network (MPNN) to perform simulations of deformable solid
dynamics on coarse meshes. Our work aims to provide accurate simulations
with an error comparable to that obtained with more refined meshes in FE
discretizations while maintaining computational efficiency by using an MPNN
component that corrects the numerical errors associated with using a coarse
mesh. We evaluate our model focusing on accuracy, generalization capacity,
and computational speed compared to a reference numerical solver that uses
64 times more refined meshes. We introduce a new dataset for this comparison,
encompassing three numerical benchmark cases: (i) free deformation after an
initial impulse, (ii) stretching, and (iii) torsion of deformable solids. Based on
simulation results, the study thoroughly discusses our method s strengths and
weaknesses. The study shows that our method corrects an average of 95.4 percent of
the numerical error associated with discretization while being up to 88 times
faster than the reference solver. On top of that, our model is fully differentiable
in relation to loss functions and can be embedded into a neural network layer,
allowing it to be easily extended by future work. Data and code are made
available on https://github.com/Kerber31/fast_coarse_FEM for further investigations.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:66793
Date23 May 2024
CreatorsMATHEUS KERBER VENTURELLI
ContributorsWALDEMAR CELES FILHO
PublisherMAXWELL
Source SetsPUC Rio
LanguageEnglish
Detected LanguagePortuguese
TypeTEXTO

Page generated in 0.0026 seconds