The effect of solids retention time (SRT) or sludge age on activated sludge properties and effluent quality was investigated using laboratory scale reactors. It was found that an increase in SRT resulted in an increase in effluent solution polysaccharide, with the < 3,000 daltons (3K) size fraction contributing up to 68 percent of solution polysaccharides. The feed consisted of low molecular weight, readily degradable protein, suggesting that the observed increases in protein and polysaccharide were due to increased release of exocellular microbial product (EMP). The increase in solution protein and polysaccharide resulted in an increase in effluent chemical oxygen demand (COD). The increase in effluent COD was not accompanied by a similar increase in effluent biological oxygen demand (BOD), indicating that the EMPs released were resistant to biodegradation. At the highest SRT, the resistance to shear decreased and the capillary suction time (CST) increased. Following an initial increase, the sludge volume index (SVI) decreased at higher SRT. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/46517 |
Date | 09 September 1998 |
Creators | Phillips, Gary Pelham |
Contributors | Environmental Engineering, Novak, John T., Boardman, Gregory D., Randall, Clifford W. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | thes_gpp.pdf |
Page generated in 0.0024 seconds