Le problème de la dimension stochastique élevée est récurrent dans les analyses probabilistes des structures. Il correspond à l'augmentation exponentielle du nombre d'évaluations du modèle mécanique lorsque le nombre de paramètres incertains est élevé. Afin de pallier cette difficulté, nous avons proposé dans cette thèse, une approche à deux étapes. La première consiste à déterminer la dimension stochastique efficace, en se basant sur une hiérarchisation des paramètres incertains en utilisant les méthodes de criblage. Une fois les paramètres prépondérants sur la variabilité de la réponse du modèle identifiés, ils sont modélisés par des variables aléatoires et le reste des paramètres est fixé à leurs valeurs moyennes respectives, dans le calcul stochastique proprement dit. Cette tâche fut la deuxième étape de l'approche proposée, dans laquelle la méthode de décomposition de la dimension est utilisée pour caractériser l'aléa de la réponse du modèle, par l'estimation des moments statistiques et la construction de la densité de probabilité. Cette approche permet d'économiser jusqu'à 90% du temps de calcul demandé par les méthodes de calcul stochastique classiques. Elle est ensuite utilisée dans l'évaluation de l'intégrité d'une toiture à ossature bois d'une habitation individuelle installée sur un site d'aléa sismique fort. Dans ce contexte, l'analyse du comportement de la structure est basée sur un modèle éléments finis, dans lequel les assemblages en bois sont modélisés par une loi anisotrope avec hystérésis et l'action sismique est représentée par huit accélérogrammes naturels fournis par le BRGM. Ces accélérogrammes permettent de représenter différents types de sols selon en se référant à la classification de l'Eurocode 8. La défaillance de la toiture est définie par l'atteinte de l'endommagement, enregistré dans les assemblages situés sur les éléments de contreventement et les éléments d'anti-flambement, d'un niveau critique fixé à l'aide des résultats des essais. Des analyses déterministes du modèle éléments finis ont montré que la toiture résiste à l'aléa sismique de la ville du Moule en Guadeloupe. Les analyses probabilistes ont montré que parmi les 134 variables aléatoires représentant l'aléa dans le comportement non linéaire des assemblages, 15 seulement contribuent effectivement à la variabilité de la réponse mécanique ce qui a permis de réduire la dimension stochastique dans le calcul des moments statistiques. En s'appuyant sur les estimations de la moyenne et de l'écart-type on a montré que la variabilité de l'endommagement dans les assemblages situés dans les éléments de contreventement est plus importante que celle de l'endommagement sur les assemblages situés sur les éléments d'anti-flambement. De plus, elle est plus significative pour les signaux les plus nocifs sur la structure.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00881187 |
Date | 08 April 2013 |
Creators | Riahi, Hassen |
Publisher | Université Blaise Pascal - Clermont-Ferrand II |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds