Return to search

Effects of Functionality and Charge in the Design of Acrylic Polymers

Use of a mixed triisobutylaluminum/1,1-diphenylhexyllithium intiator enabled the anionic polymerization of methyl methacrylate at room temperature, resulting in narrow molecular weight distributions and syndiorich structures. Polymerizations were controlled above Al:Li = 2, and control significantly decreased at elevated temperatures above 25 °C. A significant increase in Tg with increasing control of syndiotacticity demonstrated the ability to tailor polymer properties using this technique. Analysis with MALDI-TOF/TOF spectroscopy revealed the dominance of a back-biting side reaction at elevated temperatures.

Hydroxy-functional random and block copolymers of n-butyl acrylate (nBA) and 2-hydroxyethyl acrylate were synthesized using nitroxide mediated polymerization. Controlled polymerization was demonstrated, resulting in narrow polydispersities and linear molecular weight vs. conversion plots. In situ FTIR spectroscopy monitored the polymerizations and revealed pseudo first order rate kinetics for random copolymerizations. Protection of the hydroxyl using trimethylsilyl chloride alleviated isolation issues of amphiphilic polymer products. For the first time zwitterion-containing copolymers were electrospun to form nanoscale fibers with diameters as low as 100 nm. Free radical copolymerization of nBA and sulfobetaine methacrylamide produced zwitterionic copolymers with 6-13 mol % betaine. Dynamic mechanical analysis revealed a rubbery plateau and biphasic morphology similar to ionomers. Electrospinning from chloroform/ethanol solutions (80/20 v/v) at 2-7 wt % afforded polymeric fibers at viscosities below 0.02 Pa™s, which is the lowest viscosity observed for fiber formation in our laboratories. We hypothesized that intermolecular interactions rather than chain entanglements dominated the electrospinning process.

Solution rheology of zwitterionic copolymers containing 6 and 9 mol % sulfobetaine methacrylate functionality revealed two concentration regimes with a boundary at ~1.5 – 2.0 wt %, regardless of molecular weight. This transition occurred at an order of magnitude lower specific viscosity than the entanglement concentration (Ce) for poly(nBA), and correlated to the onset of fiber formation in electrospinning. Comparison to existing models for polymer solution dynamics showed closest agreement to Rubinstein's theory for associating polymers, in support of our hypothesis that zwitterionic interactions dominate solution dynamics.

The effect of ionic liquid (IL) uptake on mechanical properties and morphology of zwitterionic copolymers was explored using 1-ethyl-3-methylimidazolium ethylsulfate (EMIm ES). Dynamic mechanical analysis and impedance spectroscopy revealed a significant change in properties above a critical uptake of ~10 wt % IL. X-ray scattering revealed a significant swelling of the ionic domains at 15 wt % IL, with a 0.3 nm-1 shift in the ionomer peak to lower scattering vector. Results indicated the water-miscible IL preferentially swelled ionic domains of zwitterionic copolymers. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/28908
Date29 September 2009
CreatorsBrown, Rebecca Huyck
ContributorsChemistry, Long, Timothy E., Davis, Richey M., Moore, Robert Bowen, Riffle, Judy S., Tanko, James M.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationBrown_RH_D_2009.pdf

Page generated in 0.0119 seconds