Les conséquences liées à la présence de gradients thermiques sur le transfert de matière en milieu poreux sont encore aujourd’hui mal appréhendées, essentiellement en raison de la complexité induite par la présence de phénomènes couplés (thermodiffusion ou effet Soret). Le but de cette thèse est d’étudier et de comprendre l’influence que peut avoir un gradient thermique sur l’écoulement d’un mélange. L’objectif principal est de déterminer les coefficients effectifs modélisant les transferts de chaleur et de matière en milieux poreux, et en particulier le coefficient de thermodiffusion effectif. En utilisant la technique de changement d’échelle par prise de moyenne volumique nous avons développé un modèle macroscopique de dispersion incluant la thermodiffusion. Nous avons étudié en particulier l'influence du nombre de Péclet et de la conductivité thermique sur la thermodiffusion. Les résultats ont montré que pour de faibles nombres de Péclet, le nombre de Soret effectif en milieu poreux est le même que dans un milieu libre, et ne dépend pas du ratio de la conductivité thermique (solide/liquide). À l'inverse, en régime convectif, le nombre de Soret effectif diminue. Dans ce cas, un changement du ratio de conductivité changera le coefficient de thermodiffusion effectif. Les résultats théoriques ont montré également que, lors de la diffusion pure, même si la conductivité thermique effective dépend de la connectivité de la phase solide, le coefficient effectif de thermodiffusion est toujours constant et indépendant de la connectivité de la phase solide. Le modèle macroscopique obtenu par cette méthode est validé par comparaison avec des simulations numériques directes à l'échelle des pores. Un bon accord est observé entre les prédictions théoriques provenant de l'étude à l’échelle macroscopique et des simulations numériques au niveau de l’échelle de pores. Ceci démontre la validité du modèle théorique proposé. Pour vérifier et consolider ces résultats, un dispositif expérimental a été réalisé pour mesurer les coefficients de transfert en milieu libre et en milieu poreux. Dans cette partie, les nouveaux résultats expérimentaux sont obtenus avec un système du type « Two-Bulb apparatus ». La diffusion et la thermodiffusion des systèmes binaire hélium-azote et hélium-dioxide de carbone, à travers des échantillons cylindriques remplis de billes de différents diamètres et propriétés thermiques, sont mesurées à la pression atmosphérique. La porosité de chaque milieu a été déterminée par la construction d'une image 3D de l'échantillon par tomographie. Les concentrations sont déterminées par l'analyse en continu de la composition du mélange de gaz dans les ampoules à l’aide d’un catharomètre. La détermination des coefficients de diffusion et de thermodiffusion est réalisée par confrontation des relevés temporels des concentrations avec une solution analytique modélisant le transfert de matière entre deux ampoules. Les résultats sont en accord avec les résultats théoriques. Cela permet de conforter l’influence de la porosité des milieux poreux sur les mécanismes de diffusion et de thermodiffusion. / A multicomponent system, under nonisothermal condition, shows mass transfer with cross effects described by the thermodynamics of irreversible processes. The flow dynamics and convective patterns in mixtures are more complex than those of one-component fluids due to interplay between advection and mixing, solute diffusion, and thermal diffusion (or Soret effect). This can modify species concentrations of fluids crossing through a porous medium and leads to local accumulations. There are many important processes in nature and industry where thermal diffusion plays a crucial role. Thermal diffusion has various technical applications, such as isotope separation in liquid and gaseous mixtures, identification and separation of crude oil components, coating of metallic parts, etc. In porous media, the direct resolution of the convection-diffusion equations are practically impossible due to the complexity of the geometry; therefore the equations describing average concentrations, temperatures and velocities must be developed. They might be obtained using an up-scaling method, in which the complicated local situation (transport of energy by convection and diffusion at pore scale) is described at the macroscopic scale. At this level, heat and mass transfers can be characterized by effective tensors. The aim of this thesis is to study and understand the influence that can have a temperature gradient on the flow of a mixture. The main objective is to determine the effective coefficients modelling the heat and mass transfer in porous media, in particular the effective coefficient of thermodiffusion. To achieve this objective, we have used the volume averaging method to obtain the modelling equations that describes diffusion and thermodiffusion processes in a homogeneous porous medium. These results allow characterising the modifications induced by the thermodiffusion on mass transfer and the influence of the porous matrix properties on the thermodiffusion process. The obtained results show that the values of these coefficients in porous media are completely different from the one of the fluid mixture, and should be measured in realistic conditions, or evaluated with the theoretical technique developed in this study. Particularly, for low Péclet number (diffusive regime) the ratios of effective diffusion and thermodiffusion to their molecular coefficients are almost constant and equal to the inverse of the tortuosity coefficient of the porous matrix, while the effective thermal conductivity is varying by changing the solid conductivity. In the opposite, for high Péclet numbers (convective regime), the above mentioned ratios increase following a power law trend, and the effective thermodiffusion coefficient decreases. In this case, changing the solid thermal conductivity also changes the value of the effective thermodiffusion and thermal conductivity coefficients. Theoretical results showed also that, for pure diffusion, even if the effective thermal conductivity depends on the particle-particle contact, the effective thermal diffusion coefficient is always constant and independent of the connectivity of the solid phase. In order to validate the theory developed by the up-scaling technique, we have compared the results obtained from the homogenised model with a direct numerical simulation at the microscopic scale. These two problems have been solved using COMSOL Multiphysics, a commercial finite elements code. The results of comparison for different parameters show an excellent agreement between theoretical and numerical models. In all cases, the structure of the porous medium and the dynamics of the fluid have to be taken into account for the characterization of the mass transfer due to thermodiffusion. This is of great importance in the concentration evaluation in the porous medium, like in oil reservoirs, problems of pollution storages and soil pollution transport. Then to consolidate these theoretical results, new experimental results have been obtained with a two-bulb apparatus are presented. The diffusion and thermal diffusion of a helium-nitrogen and helium-carbon dioxide systems through cylindrical samples filled with spheres of different diameters and thermal properties have been measured at the atmospheric pressure. The porosity of each medium has been determined by construction of a 3D image of the sample made with an X-ray tomograph device. Concentrations are determined by a continuous analysing the gas mixture composition in the bulbs with a katharometer device. A transient-state method for coupled evaluation of thermal diffusion and Fick coefficients in two bulbs system has been proposed. The determination of diffusion and thermal diffusion coefficients is done by comparing the temporal experimental results with an analytical solution modelling the mass transfer between two bulbs. The results are in good agreement with theoretical results and emphasize the porosity of the medium influence on both diffusion and thermal diffusion process. The results also showed that the effective thermal diffusion coefficients are independent from thermal conductivity ratio and particle-particle touching.
Identifer | oai:union.ndltd.org:theses.fr/2010INPT0003 |
Date | 15 January 2010 |
Creators | Davarzani, Hossein |
Contributors | Toulouse, INPT, Quintard, Michel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds