• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • Tagged with
  • 17
  • 17
  • 12
  • 12
  • 11
  • 11
  • 9
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Macroscopic modeling in double emulsion systems / Modélisation macroscopique des émulsions doubles

Cervantes de la rosa, Abigail 17 May 2019 (has links)
Les procédés de séparation à l’aide de membranes liquides sous forme d’émulsions doubles (DE) ont fait l’objet d’un examen approfondi en vue d’applications potentielles dans des domaines tels que la récupération des métaux, la séparation des gaz, l’élimination des composés organiques, l’élimination des polluants et les bioséparations. Les difficultés d’application de ces procédés ne concernent pas le caractère sophistiqué des équipements ou des installations, mais réside plutôt dans une bonne compréhension des phénomènes complexes qui se produisent à l’intérieur de ces systèmes. Depuis leur invention, d’importants efforts ont permis d’améliorer la modélisation des procédés de séparation par émulsions doubles. Toutefois, une représentation mathématique détaillée des phénomènes de diffusion/réaction au sein de ces systèmes restait inachevée. C’est pourquoi, l’objectif de cette thèse est de décrire le transport réactif d’un soluté au sein d’une émulsion double, constituée de trois phases, au moyen d’une modélisation permettant d’intégrer à l’échelle macroscopique les mécanismes aux échelles locales. La méthode de prise de moyenne volumique est utilisée pour établir rigoureusement les équations à l’échelle d’un continu équivalent dans le contexte des transferts hors équilibre massique local (NLME). La modélisation proposée dans ce travail repose sur deux philosophies distinctes. Dans un premier temps, les DES sont considérées comme des systèmes constitués par trois phases où les changements de concentration dans chacune d’entre-elles se produisent à la même échelle de longueur. Dans un deuxième temps, les DES correspondent à deux régions homogènes où les changements de concentration se produisent à deux échelles de longueur différentes. Deux modèles macroscopiques différents sont ainsi obtenus : le modèle à trois phases et celui à deux régions. Dans les deux cas, ces modèles font intervenir les coefficients effectifs de transport comprenant l’information aux petites échelles. Ces derniers sont liés aux variables de fermeture dont la détermination est obtenue par la résolution des problèmes de fermeture associés. Enfin, une analyse d’un procédé de séparation par contact dans un réservoir agité a été effectuée en appliquant les deux modèles. / Liquid membrane separations as Double Emulsions (DE) have been extensively examined for potential application in fields such as metal recovery, gas separation, organic compound removal, pollutant removal, and bioseparations. The difficulties in the application of these processes do not consist in sophisticated equipment or installation but in a good understanding of the complex phenomena that occur inside these systems. Since its invention, efforts have been made for successful modeling of DE process separation; however, information about the diffusion and reaction phenomena inside the DE has not been included in the mathematical descriptions in detail yet. Therefore, the objective of this thesis is to describe the solute transport with chemical reaction through DE systems by means of rigorous modeling that can provide with valuable information from the micro-scale to be applied at the macro-scale.To accomplish this, a DE system has been analyzed as a three-phase system characterized by more than one disparate length scales.The method of volume averaging has been used to derive rigorous averaged equations in the context of the non-local mass equilibrium (NLME). The structure of the DES has been studied from two different perspectives: 1) the DES as a single domain where concentration changes occur in the same length scale and 2) the DES consists in two homogeneous regions where concentration changes occur at two different length scales. As a result of these different standpoints of representing the system, two different averaged macroscopic models were obtained: the three-phase and the two-region models. Both models present effective coefficients that include information about the micro-scale. These latter are related to closure variables which are solutions of associated boundary-value problems. Finally, an analysis of a DE-containing separation process in a stirred tank by applying both models was made.
2

Caractérisation macroscopique du milieu végétal pour les modèles physiques de feux de forêts / Macroscopic characterization of the vegetal medium for physical forest fire modeling

Lamorlette, Aymeric 14 October 2008 (has links)
La description aux échelles macroscopiques et gigascopiques des feux de forêts permet l'établissement de modèles physiques aptes à représenter l'évolution d'un feu avec une meilleure précision que les modèles empiriques de type Rothermel développés jusqu'alors. Cependant ces modèles nécessitent l'ajustement de paramètres dont la mesure directe est impossible, car les équations associées à ces modèles ne sont pas relatives à l'air et à la matière végétale mais aux milieux équivalents à la végétation pour l'échelle considérée. Les propriétés des milieux équivalents sont alors liées aux propriétés des milieux les constituant, mais la connaissance des propriétés des milieux constitutifs ne permet pas de connaître directement les propriétés du milieu équivalent. Ce travail consistera tout d'abord en la reconstruction du milieu végétal à l'aide d'outils issus de la géométrie fractale. Des méthodes de mesures de paramètres géométriques venant de la foresterie ont ensuite été utilisées pour valider nos modèles de végétation. Enfin, des expériences numériques ont été menées sur nos structures reconstruites afin d'identifier les paramètres macroscopiques qui nous intéressent. Ces expériences permettent également de valider ou non les hypothèses effectuées lors de l'établissement des équations du milieu équivalent. Les paramètres ajustés sont la viscosité du milieu équivalent, le coefficient d'échange convectif et le coefficient d'extinction / The macroscopic and gigascopic scale description of forest fires allows physical modelings of the propagation which can predict the fire evolution with a better accuracy than usually developed empirical Rothermel-like models. However, those models need fitting for their parameters which cannot be measured directly as the models equations are related to the equivalent media at the considered scale and not related to the air and the vegetal material. The equivalent media properties are related to the inner media properties, but the inner media properties knowledge does not allow directly the equivalent media properties knowledge. This work is then aiming on the vegetal medium reconstruction using fractal geometry. Geometrical parameters measurement methods used in forestry sciences are applied for the vegetal modeling validation. Numerical studies are finally done on the reconstructed structures to fit the relevant macroscopic scale parameters. Those studies also allow us to validate or invalidate the assumptions which have been done for the equivalent medium equation development. Those parameters are: the equivalent medium viscosity, the convective heat transfer coefficient and the extinction coefficient
3

Dispersion à deux et trois phases dans le cadre de l'ingénierie tissulaire du cartilage

Letellier, Samuel 24 October 2008 (has links)
Ce travail s’inscrit dans le contexte général de l’ingénierie tissulaire du cartilage (culture in vitro) bien que la physique employée puisse s’appliquer à d’autres domaines. Après un rappel du modèle macroscopique de dispersion réactive obtenu en employant la prise de moyenne volumique, les problèmes de fermeture sont résolus numériquement afin de déterminer la macro-dispersion. Les solutions numériques sont tout d’abord validées dans des cas sans advection et/ou sans réaction. L’étude de la dispersion passive (sans réaction) sur des micro-géométries simples illustre la dépendance des coefficients de dispersion macroscopiques vis-à-vis de la géométrie (porosité, croissance directionnelle ou homothétique). Enfin, la simulation du cas complet (incluant la réaction) nous a permis de montrer l’influence de plusieurs paramètres : nombre cinétique, nombre de Sherwood, structure géométrique microscopique. / Abstract
4

Multi scale modelling and numerical simulation of metal foam manufacturing process via casting / Modélisation et simulation multi-échelle du procédé de fabrication des mousses métallique par voie de fonderie

Moussa, Nadine 11 January 2016 (has links)
L'objectif est d'élaborer un nouveau procédé de fabrication de mousses métalliques par voie de fonderie en modélisant l'infiltration et la solidification d'un métal liquide dans un milieu poreux. La modélisation est faite en deux étapes.Tout d'abord, à l'échelle locale un brin de la mousse métallique est considéré comme un tube capillaire et l'infiltration et solidification d'un métal liquide dans un moule cylindrique est étudiée. Deuxièmement,le modèle macroscopique de la solidification diffusive d'un métal liquide dans un milieu poreux est obtenu par prise de moyenne volumique. Le modèle local est codée dans un outil CFD opensource et trois études paramétriques ont été faites permettant la détermination des relations de la longueur et le temps d'infiltration en fonction de paramètres de fonctionnement. La modélisation de la solidification d’un métal liquide dans un milieu poreux est simplifié en considérant que le moule est complètement saturé par un métal liquide au repos,par suite la solidification se produit par diffusion pure (pas de convection). L'équilibre thermique local (LTE) est considéré entre les phases solide et liquide du métal tandis qu'un non équilibre thermique local (LTNE) est retenue entre la phase métallique et le moule. Les problèmes de fermeture associés ainsi que le problème macroscopique ont été résolus numériquement. / The objective of this work is to elaborate a new manufacturing process of metal foams via casting by modelling the infiltration and solidification of liquid metal inside a porous medium.However, due to the complexity of this problem the study is divided into two steps. First, at local scale one strut of the metal foam is considered as a capillary tube and the infiltration and solidification of liquid metal inside a cylindrical mould is studied. Second, a macroscopic model of diffusive solidification is derived using the volume average method. The local model is coded in an open source CFD tool and three parametric studies were done where the relations between the infiltration length and time as function of the operating parameters are determined. The modelling of the solidification of liquid metal inside a porous medium is simplified by considering that the mould is fully saturated by liquid metal at rest, solidification occurs by pure diffusion. Local thermal equilibrium (LTE) is considered between the solid and liquid phases of the metal while local thermal non equilibrium (LTNE) is retained between the metallic mixture and the mould. The associated closure problems as well as the macroscopic problem were numerically solved.
5

Modélisation macroscopique des écoulements à masse volumique variable : vers un modèle de la pyrolyse de la biomasse / Macroscopic modeling of variable density flows in porous media : a model of pyrolysis of biomass

Bendhaou, Wafa 13 March 2017 (has links)
La pyrolyse est la décomposition thermochimique de la biomasse en gaz de synthèse valorisables en biocarburants. Cette technologie, propre et renouvelable, nécessite aujourd’hui des efforts de recherche et de développement afin de prouver sa compétitivité par rapport aux autres sources d’énergie. L’objectif de cette thèse est de développer un modèle macroscopique de la pyrolyse en utilisant la méthode de prise de moyenne volumique. Le modèle sera ensuite utilisé pour faire des études numériques afin de caractériser le procédé et améliorer les performances des réacteurs. Une approche en deux temps a été établie afin d’atteindre notre objectif. D’abord, des modèles macroscopiques d’écoulements à masse volumique variable en milieu poreux ont été développés. Ce type d’écoulements est similaire à celui mis en jeu en pyrolyse pour deux deux raisons: la masse volumique varie sous l’effet de gradients forts de température et le réacteur de pyrolyse peut être considéré comme un milieu poreux à double porosité (porosité à l’échelle du lit et porosité à l’échelle de la particule). Les résultats théoriques ont montré que les équations de conservation macroscopiques (continuité, quantité de mouvement et énergie) et les propriétés effectives (masse volumique, perméabilité et diffusivité thermique) font apparaitre de nouveaux termes résultants de la variation de densité. La forme explicite de ces termes a été établie et validée par simulations numériques. Les résultats obtenus ont été utilisés dans un deuxième temps afin de développer un modèle macroscopique de la pyrolyse. / Pyrolysis is a thermo-chemical conversion of biomass into bio-fuels. This technology has not been fully developed and its competitiveness against other sources of energy is yet to be proven. The aim of this work is to derive a macroscopic model of pyrolysis by means of volume averaging method. The obtained macroscopic model can then be used to conduct fast and low-cost numerical simulations to characterize the process and improve the reactor efficiency. To achieve our objective, a two-steps methodology has been established. First, the fundamental problem of variable density flow in porous media has been investigated. The physical phenomena in this kind of problem are very similar to those involved in pyrolysis for two reasons: the fluid density varies due to high temperature gradients and the pyrolysis reactor can be considered as a double porosity medium (porosity at the reactor scale and porosity at the biomass particle scale). The obtained macroscopic conservation equations (continuity, momentum and energy) and the effective properties (density, permeability and thermal diffusivity) contain additional terms resulting from the fluid density variation. The explicit form of these terms has been established and their components have been computed. The resulting models of the first step have then been used to develop a macroscopic model of the pyrolysis in the second part of our study.
6

Impact d’une phase bactérienne sur la dissolution d’un polluant résiduel en milieu poreux / Impact of a bacterial phase on the dissolving a residual polluant in porous media

Bahar, Tidjani Bahar 19 May 2016 (has links)
La contamination des ressources en eaux souterraines par une phase organique non miscible à l'eau couramment appelée NAPL (Non Aqueous Phase Liquid) constitue aujourd'hui un défi scientifique majeur compte tenu de la durée de vie d'un tel polluant. Bien que l'activité bactérienne (généralement présente sous forme de biofilm) joue un rôle crucial dans le devenir à long terme de ces effluents, peu d'études existent à l'heure actuelle sur son impact dans des conditions multiphasiques (i.e., à proximité de la source). En effet, dans la zone saturée, sous l'action des forces capillaires, le NAPL se retrouve souvent piégé, en effet, sous forme de «gouttelettes» au niveau des pores. Ce comportement spécifique au polluant modifie la dynamique du système biofilm/milieu poreux saturé et d'importantes questions restent encore ouvertes : accessibilité du polluant, modification de la tension interfaciale, production de biosurfactant, effet de toxicité (inhibition de la croissance bactérienne). Pour tenter de répondre à ces questions, nous avons adopté une approche aussi bien théorique qu'expérimentale. L'approche théorique porte sur le développement d'un modèle macroscopique décrivant le transport multiphasique en milieu poreux pour un système eau/NAPL/biofilm. Elle repose sur la méthode de prise de moyenne volumique, appliqué aux équations décrivant le couplage écoulement/transport à l'échelle du pore, permettant d'effectuer le changement d'échelle et dériver un modèle à deux équations. Le modèle est établit sous les hypothèses d'équilibre de masse local à l'interface fluide/biofilm et les contraintes associées à ces hypothèses ont étés définies. L'influence des caractéristiques microscopiques (arrangement des grains, fraction volumique du biofilm, distribution des blobs de NAPL, mouillabilité) sur les propriétés effectives du milieu (coefficient de dispersion, coefficient d'échange de masse) est discutée au travers des résultats issus des simulations. Ensuite, le modèle macroscopique a été comparé avec succès à la simulation numérique direct à l'échelle du pore pour la géométrie 2D complexe considérée. Quant à l'approche expérimentale, elle consiste à étudier le transport et la biodégradation du toluène en présence des bactéries Pseudomonas Putida F1 à l'aide d'un milieu poreux transparent 2D (micromodèle). Premièrement, nous avons étudié la dissolution du toluène résiduel sans bactéries et des courbes de dissolution du toluène ont été obtenues. Les résultats de dissolution du toluène en condition abiotique ont été comparés avec succès aux résultats du modèle théorique. Ensuite, l'étude expérimentale en micromodèle a porté sur la dissolution du toluène en condition biotique. Les résultats de ces études (courbes de dissolution et évolution de la saturation résiduelle) ont montré un impact significatif de la présence des bactéries sur les processus de dissolution par comparaison au cas abiotique. / Contamination of groundwater resources by an immiscible organic phase commonly called NAPL (Non Aqueous Phase Liquid) represents a major scientific challenge considering the residence time of such a pollutant. Although bacterial activity (usually in the form of biofilm) plays a crucial role in the long term fate of these effluents, very few works are focused on the study of such processes in multiphase conditions (oil/water/biofilm systems). The NAPL often gets trapped, in fact, under the action of capillary forces in the saturated zone in the form of «droplets» within the pores. This specific pollutant behavior changes the dynamics of biofilm /saturated porous medium system where important questions remain open: accessibility of the pollutant, changes in interfacial tension, biosurfactant production, toxicity effect (inhibition of bacterial growth). Modeling the transport of chemical species in the presence of bacteria is an extremely complex issue in terms of scale. We will use an experimental and theoretical approach to address these questions. In this thesis, we developed a macroscopic model describing multiphase transport in porous media for a water/NAPL/biofilm system. A volume averaging method has been applied here to the equations at the pore scale to make the upscaling and derive the model. This two-equation model is established under the assumptions of local mass equilibrium at the fluid/biofilm interface and the constraints associated with these assumptions were defined. The effect of microscopic features (arrangement of grains, volume fraction of the biofilm, distribution of NAPL blobs, wettability) on the effective properties of the media (dispersion coefficient, mass exchange coefficient) is discussed through some results from simulations. Subsequently, the macroscopic model has been successfully compared with the direct numerical simulation at pore scale for a 2D complex geometry. The experimental approach consists of studying transport and biodegradation of toluene in the presence of bacteria Pseudomonas Putida F1 using a flowcell. First, we studied the dissolution of toluene in abiotic conditions and toluene dissolution curves were obtained. The results of toluene dissolution in abiotic conditions were compared with success the results of the theoretical model. Finally, an experimental study in flowcell on the dissolution of toluene under biotic conditions was performed. The results of these studies (dissolution curve and evolution of toluene saturation) showed a significant impact of the presence of bacteria on the dissolution process compared to the abiotic case.
7

Modélisation d’un réacteur de gazéification a lit fixe / Modeling of a fixed bed gasifier

Deydier, Alexandre 15 February 2012 (has links)
Dans le cadre d’une thématique générale du Laboratoire Thermique Energétique et Procédés de Pau consacré à l’étude et à la valorisation des déchets tels que la pyrolyse, la combustion et la gazéification, la thèse se focalise sur la modélisation des phénomènes de transports de masse, de quantité de mouvement et d’énergie en milieu multiphasique multiconstituant réactif dans le cas d’un réacteur de gazéification à lit fixe. La première étape de la modélisation consiste à décrire classiquement le mouvement de chacune des phases continues par les équations de conservation de la masse, de la quantité de mouvement et de la chaleur. Bien qu’à cette échelle les mécanismes soient parfaitement décrits, le passage à la simulation impose une étape d’homogénéisation par prise de moyenne. Ce changement d’échelle, décrit dans ce travail, conduit à un système d’équations homogène à l’échelle locale. Ce modèle est appliqué au cas du procédé de gazéification de déchets de la société Europlasma nommé CHO-Power. Les simulations bidimensionnelles instationnaires du problème ont permis de mettre en lumière les différents mécanismes en présence au cours du procédé ainsi qu’un certain nombre de verrous dans l’obtention du chemin de convergence conduisant au régime permanent. / One of the thematics of the “Laboratoire Thermique Energétique et Procédés de Pau” is the study and the valorization of waste as pyrolysis, combustion and gasification for example. In this context, this work deals with modeling of heat, mass and momentum transport in a multiphase multi components reactive medium for a fixed bed gasifier. Conservation equations are first written for each phase. The macroscopic partial differential equations are expressed by integrating these microscopic conservation laws over a representative volume. This change of scale, described in this work, leads to a homogeneous system of equations. This model is applied to the case of the gasification of waste process of the Europlasma company named CHO-Power. The unsteady two-dimensional simulations of the problem allowed to highlight the different mechanisms present during the process and a number of locks in obtaining convergence path leading to the steady state.
8

Transferts de Chaleur et de Masse dans des Structures Poreuses Multi-échelles : Application à l'étude des Filtres à Particules Diesel

Oxarango, Laurent 16 September 2004 (has links) (PDF)
Les filtres céramiques sont des dispositifs prometteurs pour diminuer les émissions de particules carbonées par les moteurs Diesel et respecter les futures normes environnementales. L'analyse et la modélisation des phénomènes physiques intervenant dans leur fonctionnement est indispensable pour améliorer leurs performances et leur durabilité. Dans une première partie, l'écoulement du gaz, le transport et la capture des particules au sein d'un filtre présentant une structure poreuse multi-échelle sont étudiés. Une approche de type « milieu poreux effectif» est adoptée pour simuler l'étape de filtration à l'échelle du filtre. Le modèle s'appuie sur des équations 1D, développées pour un élément unitaire de filtre, préservant le caractère inertiel de l'écoulement. Dans une deuxième partie, le comportement thermique du filtre est étudié. Les transferts de chaleur convectif et diffusif sont pris en compte dans un modèle macroscopique à une température obtenu par la méthode de prise de moyenne volumique. Un terme source de combustion permet de considérer la réaction d'oxydation des particules collectées, intervenant dans l'étape de régénération du filtre.
9

Modélisation multi-échelle de l'interaction fluide-structure dans les systèmes tubulaires / Multi-scale modeling of coupled fluid-structure interaction in tube arrays

Gineau, Audrey Nathalie 06 May 2015 (has links)
Cette thèse a pour objectif de modéliser le couplage fluide-structure pouvant survenir dans les faisceaux tubulaires des réacteurs nucléaires. Leurs simulations numériques directes étant hors de portée, on met en œuvre une approche multi-échelle: il s'agit de tirer profit du coût modeste d'une description macroscopique, et à la fois, de la précision des informations microscopiques. Vis-à-vis des modèles existants, le travail de développement se focalise sur la prise en compte de la convection dans le calcul des champs hydrodynamiques, mais surtout, sur la possibilité de restituer des réponses vibratoires variées au sein d'un même faisceau. L'homogénéisation aboutit à un système d'équations gouvernant les Interactions Fluide-Solide à une échelle macroscopique. Ces équations sont couplées par une source en quantité de mouvement, traduisant les charges hydrodynamiques exercées sur une structure donnée. Cette force à modéliser représente une loi de fermeture du problème homogénéisé, mettant en jeu des coefficients a priori inconnus. Une méthode d'estimation est proposée à partir des champs microscopiques obtenus par simulation directe sur un domaine réduit et représentatif du large système de référence. Les capacités prédictives du modèle homogénéisé sont évaluées en comparaison avec des données de référence, issues de calculs numériques directs microscopiques. Chaque système considéré présente une variété de réponses en déplacement que le modèle homogénéisé restitue avec un accord satisfaisant. Cette approche multi-échelle semble être un bon compromis entre le coût des réalisations numériques et la précision attendue des données vibratoires et hydrodynamiques. / Vibration of tubes arrays is a matter of safety assessments of nuclear reactor cores or steam generators. Such systems count up thousands of slender-bodies immersed in viscous flow, involving multi-physics mechanisms caused by nonlinear dynamic interactions between the fluid and the solid materials. Direct numerical simulations for predicting these phenomena could derive from continuum mechanics, but require expensive computing resources. Therefore, one alternative to the costly micro-scale simulations consists in describing the interstitial fluid dynamics at the same scale as the structures one. Such approach rely on homogenization techniques intended to model mechanics of multi-phase systems. Homogenization results in coupled governing equations for the fluid and solid dynamics, whose solution provides individual tubes displacements and average fluid fields for each periodic unit cell. An hydrodynamic force term arises from the formulation within this set of homogenized equations: it depends on the micro-scale flow in the vicinity of a given tube-wall, but needs to be estimated as a function of the macro-scale fields in order to close the homogenized problem. The fluid force estimation relies on numerical micro-scale solutions of fluid-solid interactions over a tube array of small size. The multi-scale model is assessed for arrays made up of hundreds tubes, and is compared with solutions coming from the numerical micro-scale simulations. The macro-scale solution reproduces with good agreement the averaged solution of the micro-scale simulation, indicating that the homogenization method and the hydrodynamic force closure are suitable for such tube array configurations.
10

Caractérisation expérimentale et modélisation multi-échelles des transferts de chaleur et de masse au sein d'isolants à structure fibreuse / Experimental characterization and multi-scale modeling of heat and mass transfer within a fibrous insulation structure

El Sawalhi, Rayan 28 September 2015 (has links)
L’utilisation des matériaux à faibles impacts environnementaux devient essentielle dans le secteur du bâtiment à cause de sa forte consommation d’énergie et de ressources naturelles. Cette thèse porte sur les isolants bio-sourcés et spécialement les laines de chanvres possédant des propriétés thermiques et hydriques intéressantes. La laine de chanvre, étant composée essentiellement de fibres végétales, constitue un matériau fibreux anisotrope et fortement poreux, et possède à l’échelle microscopique une structure complexe et aléatoire. D’où l’intérêt de décrire précisément la morphologie de ce type de laine et de caractériser sa structure par analyse d’images tomographiques à rayons X et des images MEB. Puis nous avons mis en place un modèle macroscopique couplé de transfert de chaleur et de masse, permettant de comprendre le comportement thermohydrique de ces laines en utilisant la méthode de changement d’échelle par prise de moyenne. Pour prendre en compte la complexité géométrique de la microstructure nous avons eu recours à un double changement d’échelle. / The use of low environmental impact materials becomes essential in the construction industry due to its high consumption of energy and natural resources. In this thesis it was focused on the bio-based and especially wool hemp insulation with interesting thermal and water properties. Hemp wool, being composed substantially of plant fibers, is an anisotropic, fibrous and highly porous material. At the microscopic level it possesses a complex and random structure, hence the interest of an accurate description to the morphology of this type of wool and to characterize its structure analysis by X-ray tomographic images and SEM images. Then a macroscopic model of coupled heat transfer and mass transport is set up to understand the behavior of these wools using the scaling method average gain. To take into account the geometric complexity of the microstructure a double change of scale was used.

Page generated in 0.0593 seconds