Return to search

Structures périphériques des groupes relativement hyperboliques / Peripheral structures of relatively hyperbolic groups

L’objectif principal de cette thèse est d’étudier les structures périphériques des groupes relativement hyperboliques. En contraste avec l’hyperbolicité ordinaire, l’hyperbolicité relative est définie par rapport à une famille finie de sous-groupes, appelée structure périphérique. Dans cette thèse, on introduit et caractérise une classe de structures paraboliques étendues pour des groupes relativement hyperboliques. En particulier, on montre que si un groupe relativement hyperbolique agit de façon géométriquement finie sur son bord de Floyd, alors les structures paraboliques étendues se révèlent être les seules possibles.La thèse met également l’accent sur l’étude des sous-groupes relativement quasiconvexes, qui jouent un rôle important en théorie des groupes relativement hyperboliques. Grâce à la flexibilité des structures périphériques, la quasiconvexité relative d’un sous-groupe est caractérisée par rapport aux structures paraboliques étendues. En outre, les sous-groupes relativement quasiconvexes sont étudiés par des méthodes dynamiques en terme des groupes de convergence. Ceci nous conduit à obtenir un théorème décrivant l’intersection des ensembles limites pour une paire de sous-groupes relativement quasiconvexes ; et donner des preuves dynamiques de plusieurs résultats bien connus sur les sous-groupes relativement quasiconvexes. De plus, le nombre de classes de conjugaison de sous-groupes finis est étudié dans des groupes relativement hyperboliques. Dans le cas des groupes kleiniens, on obtient plusieurs résultats sur le lien entre les ensembles d’axes et la commensurabilité de deux groupes kleiniens. Un résultat de la thèse d’intérêt indépendant montre qu’un sous-groupe separable a la propriété d’empilement borné. Ceci implique que cette propriété est vraie pour tout sous-groupe d’un groupe polycyclique, répondant à une question de Hruska-Wise. / The main objective of this thesis is to study peripheral structures of relatively hyperbolic groups. In contrast with hyperbolicity, relative hyperbolicity is defined with respect to a finite collection of subgroups, which is referred to as a peripheral structure. In the thesis, we introduce and characterize a class of peripheralstructures: parabolically extended structures for relatively hyperbolic groups. In particular, it is shown that if a relatively hyperbolic group acts geometrically finitely on its Floyd boundary, then parabolically extended structures turn out to be the only possible ones. The thesis also focuses on the study of relatively quasiconvex subgroups, which play an important role in the theory of relatively hyperbolic groups. With the flexibility of peripheral structures, relative quasiconvexity of a subgroup is characterized with respect to parabolically extended structures. Moreover, relatively quasiconvex subgroups are studied using dynamical methods in terms of convergence group actions. This leads us to obtain a limit set intersection theorem for a pair of relatively quasiconvex subgroups, and give dynamical proofs of several well-known results on relatively quasiconvex subgroups. In addition, the number of conjugacy classes of finite subgroups is explored in relatively hyperbolic groups. In Kleinian groups, we prove several results on the relationship between the axes sets and commensurability of two Kleinian groups. A result of independent interest in the thesis is that a separable subgroup has the bounded packing property. This implies that the property is true for each subgroup of a polycyclic group, answering a question of Hruska-Wise.

Identiferoai:union.ndltd.org:theses.fr/2011LIL10007
Date30 May 2011
CreatorsYang, Wenyuan
ContributorsLille 1, Potyagailo, Leonid
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds