Return to search

Identification and characterization of salt stress related genes in soybean.

Phang Tsui-Hung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 146-162). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Abstract --- p.iii / Acknowledgement --- p.vi / Abbreviations --- p.viii / Table of contents --- p.xii / List of figures --- p.xviii / List of tables --- p.xx / Chapter 1. --- Literature Review --- p.1 / Chapter 1.1 --- Salinity as a global problem --- p.1 / Chapter 1.2 --- Formation of saline soil --- p.1 / Chapter 1.3 --- Urgent need to reclaim saline lands --- p.2 / Chapter 1.4 --- Cellular routes for Na+ uptake --- p.2 / Chapter 1.4.1 --- Carriers involved in K+ and Na+ uptake --- p.2 / Chapter 1.4.2 --- Channels involved in K+ and Na+ uptake --- p.4 / Chapter 1.5 --- Adverse effects of high salinity --- p.5 / Chapter 1.5.1 --- Hyperosmotic stress --- p.5 / Chapter 1.5.2 --- Ionic stress --- p.6 / Chapter 1.5.2.1 --- Deficiency of K+ --- p.6 / Chapter 1.5.2.2 --- Perturbation of calcium balance --- p.7 / Chapter 1.5.3 --- Toxicity of specific ions --- p.7 / Chapter 1.5.4 --- Oxidative stress --- p.10 / Chapter 1.6 --- Mechanisms of salt stress adaptation in plants --- p.11 / Chapter 1.6.1. --- Maintenance of ion homeostasis --- p.12 / Chapter 1.6.1.1 --- Regulation of cytosolic Na+ concentration --- p.12 / Chapter 1.6.1.2 --- SOS signal transduction pathway --- p.15 / Chapter 1.6.2 --- Dehydration stress adaptation --- p.17 / Chapter 1.6.2.1 --- Aquaporins ´ؤ water channel proteins --- p.17 / Chapter 1.6.2.2 --- Osmotic adjustment --- p.20 / Chapter 1.6.2.2.1 --- Genetic engineering of glycinebetaine biosynthesis --- p.23 / Chapter 1.6.2.2.2 --- Genetic engineering of mannitol biosynthesis --- p.27 / Chapter 1.6.3 --- Morphological and structural adaptation --- p.28 / Chapter 1.6.4 --- Restoration of oxidative balance --- p.29 / Chapter 1.6.5 --- Other metabolic adaptation --- p.31 / Chapter 1.6.5.1 --- Induction of Crassulacean acid (CAM) metabolism --- p.34 / Chapter 1.6.5.2 --- Coenzyme A biosynthesis --- p.34 / Chapter 1.7 --- Soybean as a target for studying salt tolerance --- p.36 / Chapter 1.7.1 --- Economical importance of soybean --- p.36 / Chapter 1.7.2 --- Reasons for studying salt stress physiology in soybeans --- p.38 / Chapter 1.7.3 --- Salt tolerant soybean in China --- p.39 / Chapter 1.7.4 --- Exploring salt tolerant crops by genetic engineering --- p.41 / Chapter 1.8 --- Significance of this project --- p.47 / Chapter 2. --- Materials and methods --- p.48 / Chapter 2.1 --- Materials --- p.48 / Chapter 2.1.1 --- Plant materials used --- p.48 / Chapter 2.1.2 --- Bacteria strains and plasmid vectors --- p.48 / Chapter 2.1.3 --- Growth media for soybean --- p.48 / Chapter 2.1.4 --- Equipment and facilities used --- p.48 / Chapter 2.1.5 --- Primers used --- p.48 / Chapter 2.1.6 --- Chemicals and reagents used --- p.49 / Chapter 2.1.7 --- Solutions used --- p.49 / Chapter 2.1.8 --- Commercial kits used --- p.49 / Chapter 2.1.9 --- Growth and treatment condition --- p.49 / Chapter 2.1.9.1 --- Characterization of salt tolerance of Wenfeng7 --- p.49 / Chapter 2.1.9.2 --- Samples for subtractive library preparations --- p.50 / Chapter 2.1.9.3 --- Samples for slot blot and northern blot analyses --- p.50 / Chapter 2.1.9.4 --- Samples for gene expression pattern analysis --- p.50 / Chapter 2.2. --- Methods --- p.52 / Chapter 2.2.1 --- Total RNA extraction --- p.52 / Chapter 2.2.2 --- Construction of subtractive libraries --- p.53 / Chapter 2.2.3 --- Cloning of salt-stress inducible genes --- p.53 / Chapter 2.2.3.1 --- Preparation of pBluescript II KS(+) T-vector for cloning --- p.53 / Chapter 2.2.3.2 --- Ligation of candidate DNA fragments with T-vector --- p.53 / Chapter 2.2.3.3 --- Transformation --- p.54 / Chapter 2.2.3.4 --- PCR screening --- p.54 / Chapter 2.2.4 --- Preparation of recombinant plasmid for sequencing --- p.55 / Chapter 2.2.5 --- Sequencing of differentially expressed genes --- p.55 / Chapter 2.2.6 --- Homology search of differentially expressed genes --- p.56 / Chapter 2.2.7 --- Expression pattern analysis --- p.56 / Chapter 2.2.7.1 --- Preparation of single-stranded DIG-labeled PCR probes --- p.56 / Chapter 2.2.7.2 --- Preparation of cRNA DIG-labeled probes --- p.57 / Chapter 2.2.7.3 --- Testing the concentration of DIG-labeled probes --- p.58 / Chapter 2.2.7.4 --- Slot blot --- p.58 / Chapter 2.2.7.5 --- Northern blot --- p.59 / Chapter 2.2.7.6 --- Hybridization --- p.60 / Chapter 2.2.7.7 --- Stringency washed --- p.60 / Chapter 2.2.7.8 --- Chemiluminescent detection --- p.60 / Chapter 3. --- Results --- p.61 / Chapter 3.1 --- Characterization of salt tolerance of Wenfeng7 --- p.61 / Chapter 3.2 --- Identification of salt-stress induced genes from Wenfeng7 --- p.70 / Chapter 3.2.1 --- Screening subtractive libraries of Wenfeng 7 for salt inducible genes --- p.70 / Chapter 3.2.1.1 --- Results of homology search for salt inducible genes --- p.71 / Chapter 3.2.1.2 --- Northern blot showing the salt inducibility of selected clones --- p.72 / Chapter 3.3 --- Genes expression pattern of selected salt inducible genes --- p.104 / Chapter 3.3.1 --- Expression of genes related to dehydration adjustment --- p.104 / Chapter 3.3.1.1 --- Dehydration responsive protein RD22 (Clone no.: HML806) --- p.104 / Chapter 3.3.1.2 --- Beta-amylase (Clone no.: HML767) --- p.104 / Chapter 3.3.2 --- Expression of genes related to structural modification --- p.105 / Chapter 3.3.3 --- Expression of genes related to metabolic adaptation --- p.105 / Chapter 3.3.3.1 --- Subgroup 1: Gene related to protein synthesis --- p.105 / Chapter 3.3.3.1.1 --- Translational initiation factor nsp45 (Clone no.: HML1042) --- p.105 / Chapter 3.3.3.1.2 --- Seed maturation protein PM37 (Clone no.: HML931) --- p.106 / Chapter 3.3.3.2 --- Subgroup 2: Genes related to phosphate metabolism (Clone no.: HML1000) --- p.107 / Chapter 3.3.3.3 --- Subgroup 3: Genes related to storage and mobilization of nutrient resources --- p.107 / Chapter 3.3.3.3.1 --- Vegetative storage protein A (Clone no.: HML762) --- p.107 / Chapter 3.3.3.3.2 --- Cysteine proteinase (Clone no.: HML928) --- p.107 / Chapter 3.3.3.4 --- Subgroup 4: Genes related to senescence --- p.109 / Chapter 3.3.4 --- Expression of genes encoding novel protein (Clone no.: HML782) --- p.109 / Chapter 4. --- Discussion --- p.125 / Chapter 4.1 --- Evaluation of salt tolerance of Wenfeng7 --- p.125 / Chapter 4.2 --- Isolation of salt inducible genes in Wenfeng7 --- p.127 / Chapter 4.2.1 --- Genes associated with dehydration adaptation --- p.129 / Chapter 4.2.1.1 --- Dehydration responsive protein RD22 --- p.129 / Chapter 4.2.1.2 --- Beta-amylase --- p.130 / Chapter 4.2.2 --- Genes associated with structural adaptation --- p.132 / Chapter 4.2.3 --- Genes associated with metabolic adaptation --- p.133 / Chapter 4.2.3.1 --- Subgroup 1: Genes related to protein synthesis --- p.133 / Chapter 4.2.3.2 --- Subgroup 2: Genes related to phosphate metabolism --- p.137 / Chapter 4.2.3.3 --- Subgroup 3: Genes related to storage and mobilization of nutrient resources --- p.138 / Chapter 4.2.3.4 --- Subgroup 4: Genes related to senescence --- p.140 / Chapter 4.2.4 --- Novel genes --- p.142 / Chapter 4.3 --- Brief summary --- p.142 / Chapter 5. --- Conclusion and perspectives --- p.144 / References --- p.146 / Appendix I: Screening for salt tolerant soybeans --- p.163 / Appendix II: Major equipment and facilities used --- p.165 / Appendix III: Major chemicals and reagents used in this research --- p.166 / Appendix IV: Major common solutions used in this research --- p.168 / Appendix V: Commercial kits used in this research --- p.170

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_323847
Date January 2002
ContributorsPhang, Tsui-Hung., Chinese University of Hong Kong Graduate School. Division of Biology.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xx, 170 leaves : ill. (some col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0025 seconds