Return to search

The origins, maintenance, and conservation of biodiversity in spatial networks

Biodiversity is distributed unevenly across geographic space and the tree of life. A key task of biology is to understand the ecological and evolutionary processes that generate these patterns. I investigate how the structure and geometry of a landscape, for example the sizes and arrangements of islands in an archipelago, affects processes contributing to the generation and conservation of biodiversity patterns. In the first chapter, I integrate two disparate bodies of theory, ecological neutral theory and network theory into a powerful new framework for investigating patterns of biodiversity in a complex landscape. I examine the consequences of network structure, such as size, topology, and connectivity, for diversity patterning across the metacommunity. The second chapter focuses on how the position of a node within a network controls local community (node) diversity. Network statistics, such as node centrality, are found to predict diversity patterns with more central nodes accumulating the most diversity. In the third chapter, I use the theory to evaluate how well fundamental concepts in conservation biology perform when neutral metacommunity processes generate diversity patterns. I find that contemporary diversity patterns are poor predictors of the long-term capacity of a network to support diversity, challenging a host of conservation concepts and applications. In the fourth chapter, I consider biodiversity dynamics in a network with a different model of speciation, where spatial structure is needed for divergence. In this case, speciation hotspots form where the dispersal properties of an organism and the spatial structure of the landscape coincide. In the final chapter I study the biodiversity of a natural structured metacommunity, the ants of the Fijian archipelago. I used a variety of collecting techniques to inventory the ant species occurring across a system of islands in the southwest Pacific. Approximately 50 new species were discovered, and the distributions of the ant species across the islands are firmly established. Radiations are observed in the genera Pheidole, Camponotus, Lordomyrma, Leptogenys, Cerapachys, Strumigenys, Poecilomyrma, and Hypoponera. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/14809
Date16 February 2012
CreatorsEconomo, Evan Philip
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0019 seconds