Return to search

Simulation of individual cells in flow

In this thesis, simulations are performed to study the motion ofindividual cells in flow, focusing on the hydrodynamics of actively swimming cells likethe self-propelling microorganisms, and of passively advected objects like the red bloodcells. In particular, we develop numerical tools to address the locomotion ofmicroswimmers in viscoelastic fluids and complex geometries, as well as the motion ofdeformable capsules in micro-fluidic flows. For the active movement, the squirmer is used as our model microswimmer. The finiteelement method is employed to study the influence of the viscoelasticity of fluid on theperformance of locomotion. A boundary element method is implemented to study swimmingcells inside a tube. For the passive counterpart, the deformable capsule is chosen as the modelcell. An accelerated boundary integral method code is developed to solve thefluid-structure interaction, and a global spectral method is incorporated to handle theevolving cell surface and its corresponding membrane dynamics. We study the locomotion of a neutral squirmer with anemphasis on the change of swimming kinematics, energetics, and flowdisturbance from Newtonian to viscoelastic fluid. We also examine the dynamics of differentswimming gaits resulting in different patterns of polymer deformation, as well as theirinfluence on the swimming performance. We correlate the change of swimming speed withthe extensional viscosity and that of power consumption with the phase delay of viscoelasticfluids. Moreover, we utilise the boundary element method to simulate the swimming cells in astraight and torus-like bent tube, where the tube radius is a few times the cell radius. Weinvestigate the effect of tube confinement to the swimming speed and power consumption. Weanalyse the motions of squirmers with different gaits, which significantly affect thestability of the motion. Helical trajectories are produced for a neutralsquirmer swimming, in qualitative agreement with experimental observations, which can beexplained by hydrodynamic interactions alone. We perform simulations of a deformable capsule in micro-fluidic flows. We look atthe trajectory and deformation of a capsule through a channel/duct with a corner. Thevelocity of capsule displays an overshoot as passing around the corner, indicating apparentviscoelasticity induced by the interaction between the deformable membrane and viscousflow. A curved corner is found to deform the capsule less than the straight one. In addition, we propose a new cell sorting device based on the deformability of cells. Weintroduce carefully-designed geometric features into the flow to excite thehydrodynamic interactions between the cell and device. This interaction varies andclosely depends on the cell deformability, the resultant difference scatters the cellsonto different trajectories. Our high-fidelity computations show that the new strategy achievesa clear and robust separation of cells. We finally investigate the motion of capsule in awall-bounded oscillating shear flow, to understand the effect of physiological pulsation to thedeformation and lateral migration of cells. We observe the lateral migration velocity of a cellvaries non-monotonically with its deformability. / <p>QC 20140313</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-142557
Date January 2014
CreatorsZhu, Lailai
PublisherKTH, Stabilitet, Transition, Kontroll, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-MEK, 0348-467X

Page generated in 0.0028 seconds