Les spectroscopies vibrationnelles infrarouge et Raman sont de formidables techniques d'analyse pour la caractérisation d'échantillons complexes. Elles permettent effectivement d'accéder à une grande richesse d'information moléculaire. Au-delà des caractérisations macroscopiques de ces techniques, le couplage des spectromètres à des microscopes rend possible la génération de cartographies représentant les distributions spatiales des espèces chimiques de l'échantillon analysé. Malgré ce fort potentiel, ces spectroscopies sont mal adaptées à l'imagerie d'échantillons de taille micrométrique et submicrométrique. Leurs résolutions spatiales en partie fixées par la limite de diffraction sont effectivement restreintes. L'augmentation de la résolution spatiale est donc toujours un enjeu majeur pour permettre une meilleure caractérisation des échantillons analysés. Deux approches se sont dégagées pour améliorer cette limite. La première solution est centrée sur le développement instrumental comme par exemple la spectroscopie champ proche. La seconde approche algorithmique tente de repousser les limites de résolution de système optique par le traitement mathématique et statistique des images générées sur des spectromètres classiques en champ lointain. C'est dans ce cadre que s'inscrit notre recherche. Nous présenterons ainsi dans ce travail le développement et l'optimisation d'un nouveau concept dit de " super-résolution " adapté aux imageries des spectroscopies moyen infrarouge, proche infrarouge et Raman. Différents échantillons d'origines pharmaceutiques, biologiques ou environnementales seront alors exploités.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00687944 |
Date | 17 January 2012 |
Creators | Offroy, Marc |
Publisher | Université des Sciences et Technologie de Lille - Lille I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds