Flow speed describes general traffic operation conditions on a segment of roadway. It is also used to diagnose special conditions such as congestion and incidents. Accurate speed estimation plays a critical role in traffic management or traveler information systems. Data from loop detectors have been primary sources for traffic information, and single loop are the predominant loop detector type in many places. However, single loop detectors do not produce speed output. Therefore, speed estimation using single loop outputs has been an important issue for decades. This dissertation research presents two methodologies for speed estimation using single loop outputs. Based on findings from past studies and examinations in this research, it is verified that speed estimation is a nonlinear system under various traffic conditions. Thus, a methodology of using Unscented Kalman Filter (UKF) is first proposed for such a system. The UKF is a parametric filtering technique that is suitable for nonlinear problems. Through an Unscented Transformation (UT), the UKF is able to capture the posterior mean and covariance of a Gaussian random variable accurately for a nonlinear system without linearization. This research further shows that speed estimation is a nonlinear non-Gaussian system. However, Kalman filters including the UKF are established based on the Gaussian assumption. Thus, another nonlinear filtering technique for non-Gaussian systems, the Particle Filter (PF), is introduced. By combining the strengths of both the PF and the UKF, the second speed estimation methodology - Unscented Particle Filter (UPF) is proposed for speed estimation. The use of the UPF avoids the limitations of the UKF and the PF. Detector data are collected from multiple freeway locations and the microscopic traffic simulation program CORSIM. The developed methods are applied to the collected data for speed estimation. The results show that both proposed methods have high accuracies of speed estimation. Between the UKF and the UPF, the UPF has better performance but has higher computation cost. The improvement of speed estimation will benefit real-time traffic operations by improving the performance of applications such as travel time estimation using a series of single loops in the network, incident detection, and large truck volume estimation. Therefore, the work enables traffic analysts to use single loop outputs in a more cost-effective way.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/85816 |
Date | 10 October 2008 |
Creators | Ye, Zhirui |
Contributors | Zhang, Yunlong |
Publisher | Texas A&M University |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Dissertation, text |
Format | electronic, born digital |
Page generated in 0.0023 seconds