Une étude d'un assemblage symétrique de trois 4-simplex en géométrie classique, de Regge et quantique. Nous étudions les propriétés géométriques et surtout la présence de courbure. Nous montrons que les géométries classique et de Regge de l'assemblage ont une courbure qui évolue en fonction de ses paramètres de bordure. Pour la géométrie quantique, une version euclidienne du modèle EPRL est utilisé avec une valeur pratique du paramètre Barbero-Immirzi pour définir l'amplitude de transition de l'ensemble et de ses composants. Un code C ++ est conçu pour calculer les amplitudes et étudier numériquement la géométrie quantique. Nous montrons qu'une géométrie classique, avec une courbure, émerge déjà à bas spin. Nous reconnaissons également l'apparition de configurations dégénérées et de leurs effets sur la géométrie attendue. / A study of symmetrical assembly of three euclidean 4-simplices in classical, Regge and quantum geometry. We study the geometric properties and especially the presence of curvature. We show that classical and Regge geometry of the assembly have curvature which evolves in function of its boundary parameters. For the quantum geometry, a euclidean version of EPRL model is used with a convenient value of the Barbero-Immirzi parameter to define the transition amplitude of the assembly and its components. A C++ code is design for compute the amplitudes and study numerically the quantum geometry. We show that a classical geometry, with curvature, emerges already at low spin. We also recognize the appearance of the degenerate configurations and their effects on the expected geometry.
Identifer | oai:union.ndltd.org:theses.fr/2016AIXM4076 |
Date | 29 November 2016 |
Creators | Collet, François |
Contributors | Aix-Marseille, Rovelli, Carlo |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds