Certaines phycotoxines marines de la famille des spiroimines, comme la gymnodimine et les spirolides sont produites par des dinoflagellés et se concentrent dans les mollusques filtreurs. Puis, par transport vectoriel, elles peuvent atteindre les animaux marins et les êtres humains. Des études biologiques ont montré que ces toxines sont de puissants antagonistes des récepteurs nicotiniques de l’acétylcholine (nAChRs) et qu’elles présentent une spécificité modérée pour des sous-types de récepteurs. Au laboratoire, nous nous intéressons à la synthèse totale du 13-desméthyle spirolide C, dans le but de produire une plus grande quantité de cette molécule (que par extraction) afin d'étudier plus en détail son activité biologique. Afin d’atteindre ce but, deux stratégies seront présentées. La première faisant intervenir une réaction-clef de décarboxylation allylante asymétrique, permettant la formation stéréosélective d’un centre quaternaire. La seconde approche utilise une réaction de Diels-Alder intermoléculaire pour construire le même motif. Au cours de ces dernières années, les récents développements dans le domaine des couplages organométalliques ont permis de s’affranchir de la préfonctionnalisation d’une liaison C_H avant sa transformation en liaison C_C ou C_hétéroatome, par l’utilisation de catalyseurs à base de métaux de transition. Afin de pallier ce problème, une approche généralement employée, consiste à utiliser la proximité spatiale d’un hétéroatome chélatant (N, O, etc.), appelé groupement directeur (GD), qui permet de diriger la réaction vers une liaison C_H spécifique. Nous avons étudié l’application d’une réaction de type Heck dans la synthèse de squelettes de molécules biologiquement actives. Dans un second chapitre de ce manuscrit seront détaillés les récents avancements dans la synthèse d’hétérocycles par activation C_H, catalysée au rhodium (III). Ainsi, la synthèse de spirocycles carbonés, de spiropipéridines et d’azépinones seront présentés, accompagnées des considérations mécanistiques de ces réactions. / Some marine shellfish toxins in the spiroimine family like gymnodimine and spirolides are produced by dinoflagellates and can be transferred and concentrated in seafood then by vectorial transport they can reach marine animals and humans. Biological studies have shown that these toxins are potent antagonists of the nicotinic acetylcholine receptors (nAChRs) and have a moderate selectivity for subtypes receptor. In the laboratory, we are interested in the total synthesis of gymnodimine and 13-desmethyl spirolide C in order to produce a larger quantity of these molecules (compared to isolation from dinoflagellates) to further investigate their biological activities. In this regard, we developed two complementary approaches to access the spiroimine pattern of these molecules. The first one is based on a decarboxylative asymmetric allylic alkylation reaction. The second uses an intermolecular Diels-Alder reaction.With the need of more sophisticated scaffolds for medicinal chemistry or total synthesis, the development of appropriate ortho-directed C_H activation reactions have proven recently to be crucial. Herein, we propose two simple and efficient intramolecular cyclisation reactions, involving a methoxy-amide directing group and a Rh(III)-catalysis. Synthesis of spiropiperidines and azepinones are presented.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLS410 |
Date | 26 October 2018 |
Creators | Peneau, Augustin |
Contributors | Université Paris-Saclay (ComUE), Guillou, Catherine, Chabaud, Laurent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds