Return to search

Analytische und numerische Verfahren zur Berechnung der Hilbert-Transformation und zur Lösung funktionentheoretischer Randwertaufgaben

In der Arbeit werden effektive Verfahren zur Auswertung der Hilbert-Transformation entwickelt und zur Lösung nichtlinearer Randwertaufgaben der Funktionentheorie eingesetzt. Die Verwendung polynomialer Spline-Wavelets und geeignet modifizierter Wavelet-Algorithmen ermöglichen die schnelle Berechnung auf gleichmäßigen und ungleichmäßigen Gittern sowie deren automatische Anpassung an lokale Besonderheiten der Lösung. Die detaillierte Untersuchung des Zusammenhangs zwischen der Glattheit, der Größe des Trägers des Splines, der Anzahl verschwindender Momente und des asymptotischen Verhaltens der Hilbert-Transformierten erlaubt die Anpassung der Parameter des Verfahrens in Bezug auf Genauigkeit und Effektivität. Im zweiten Teil der Arbeit werden verschiedene Algorithmen zur Lösung von Riemann-Hilbert Probleme vorgeschlagen und deren Konvergenzverhalten untersucht. Die theoretischen Ergebnisse werden durch numerische Experimente bestätigt.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:22749
Date17 December 2010
CreatorsMartin, Frank
ContributorsWegert, Elias, Potts, Daniel, TU Bergakademie Freiberg
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds