Return to search

Making Sense of Big (Kinematic) Data: A Comprehensive Analysis of Movement Parameters in a Diverse Population

OBJECTIVE
The purpose of this study was to determine how kinematic, big data can be evaluated using computational, comprehensive analysis of movement parameters in a diverse population.
METHODS
Retrospective data was collected, cleaned, and reviewed for further analysis of biomechanical movement in an active population using 3D collinear resistance loads. The active sample of the population involved in the study ranged from age 7 to 82 years old and respectively identified as active in 13 different sports. Moreover, a series of exercises were conducted by each participant across multiple sessions. Exercises were measured and recorded based on 6 distinct biometric movement parameters: explosiveness, velocity, power, deceleration, braking, consistency, endurance, and range of motion. Analysis and data visualization portrayed how 3D collinear resistance load impacted specific muscles and performance metrics.
RESULTS
The model with the highest accuracy rate was Naive Bayes and Fast Large Margin at 58.3% for future predictions considering impact for specific muscles, movement parameters, and performance metric data. The data visualization involved a proof-of-concept human-computer interface and presented each component in relation to one another within the active population database, movement parameters, and performance metrics.
DISCUSSION
Understanding the findings regarding 3D collinear resistance sets a precedence for future development for the active population and research in the sports analytics field. Additionally, the visual proof of concept interface promotes future development for a diverse, active population.

Identiferoai:union.ndltd.org:pacific.edu/oai:scholarlycommons.pacific.edu:uop_etds-4981
Date01 January 2023
CreatorsNunis, Naomi Wilma
PublisherScholarly Commons
Source SetsUniversity of the Pacific
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of the Pacific Theses and Dissertations

Page generated in 0.0178 seconds