L'endocytose dépendante de la clathrine (EDC), c’est-à-dire la formation de vésicules recouvertes de clathrine (VRC) à partir de la membrane plasmique, est un processus essentiel dans les cellules eucaryotes. Au cours de l’EDC, la GTPase dynamine est recrutée au cou de la VRC naissante où elle s'oligomérise en hélice. Les changements de conformation induits par l'hydrolyse du GTP catalysent la scission du cou vésiculaire. Ce processus a été étudié en détail par reconstitution in vitro sur des tubules membranaires, mais il doit être établi dans des cellules vivantes, où les interactions de la dynamine avec d'autres protéines comme l'amphiphysine sont critiques. L'imagerie TIRF (Total Internal Reflection Fluorescence) avec le protocole pH pulsé (ppH) sur cellules vivantes permet la détection de la formation de VRC avec une résolution spatiale (~100 nm) et temporelle (2 s) élevée. Ce protocole a révélé que la dynamine présente un recrutement biphasique aux puits recouverts de clathrine (PRC) en maturation avec un pic au moment de la scission mais les paramètres de son recrutement dans les cellules vivantes restent peu clairs. Pour déterminer ces paramètres, j’ai utilisé des techniques d’imagerie sur cellules vivantes pour étudier le recrutement de la dynamine à l’échelle globale et à l’échelle de la molécule unique lors de perturbations aiguës de sa fonction. Mes résultats de thèse ont montré que la dynamine est recrutée à la membrane plasmique, diffuse à l'extérieur des PRC et y est transitoirement piégée. De plus, j’ai déterminé avec des dynamines mutées (1) que le domaine PRD de la dynamine est crucial pour son recrutement aux PRC ; (2) que le domaine PH est important pour la scission vésiculaire mais par pour son recrutement aux PRC ou à la membrane plasmique. Enfin, j’ai observé que la dynamine s'échange en permanence avec un pool extra-PRC, ce qui permettrait son recrutement ultérieur par l'ajout de nouveaux sites de liaison et sa capacité à rétrécir le cou des vésicules suite à l’hydrolyse du GTP. En conclusion, ces données suggèrent qu’aux PRC, les molécules de dynamine (1) sont constamment échangées ; (2) diffusent à des taux similaires tout au long du processus de formation, maturation et scission des vésicules; et (3) l'activité GTPase de la dynamine contribue à la maturation et à la scission des VRC. / Clathrin-mediated endocytosis (CME), the formation of clathrin-coated vesicles (CCV) from the plasma membrane, is an essential process in eukaryotic cells. During CME, the GTPase dynamin is recruited to the neck of nascent CCV where it oligomerizes into helical filaments. Conformational changes induced by the hydrolysis of GTP catalyze the scission of the vesicle neck. This process has been studied in detail with in vitro reconstitution on membrane tubules but it needs to be established in living cells, where interactions between dynamin and other proteins such as amphiphysin are critical. Live cell total internal reflection fluorescence (TIRF) imaging with the pulsed pH (ppH) assay allows the detection of CCV formation with high spatial (~100 nm) and temporal (2 s) resolutions. It has revealed that dynamin is recruited to maturing clathrin-coated pits (CCP) in two phases with a peak at the time of scission but the parameters of its recruitment in living cells remain unclear. To determine these parameters, we have performed live cell imaging of dynamin recruitment at collective and single molecule levels during acute perturbations of its function. My PhD results showed that dynamin is recruited to the plasma membrane, diffuses outside of CCP and is trapped at CCP. Furthermore, we determined with mutated dynamins that (1) the PRD domain of dynamin is crucial for its recruitment at CCP; (2) the PH domain is important for vesicular scission but not for recruitment to CCP or to the plasma membrane. Finally, I observed that dynamin exchanges with an extra-CCP pool at all times: this would allow for its further recruitment by addition of new binding sites and its ability to narrow the vesicle neck after GTP hydrolysis. Altogether, these data suggest that in CCP dynamin molecules (1) are constantly exchanged; (2) diffuse at similar rates throughout the entire process of vesicle formation, from maturation until scission; and (3) that dynamin’s GTPase activity contributes to CCP maturation and scission.
Identifer | oai:union.ndltd.org:theses.fr/2019BORD0053 |
Date | 16 April 2019 |
Creators | Claverie, Léa |
Contributors | Bordeaux, Perrais, David |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds