In this dissertation, we develop and analyze novel optimizing feedback laws for control-affine systems with real-valued state-dependent output (or objective) functions. Given a control-affine system, our goal is to derive an output-feedback law that asymptotically stabilizes the closed-loop system around states at which the output function attains a minimum value. The control strategy has to be designed in such a way that an implementation only requires real-time measurements of the output value. Additional information, like the current system state or the gradient vector of the output function, is not assumed to be known. A method that meets all these criteria is called an extremum seeking control law. We follow a recently established approach to extremum seeking control, which is based on approximations of Lie brackets. For this purpose, the measured output is modulated by suitable highly oscillatory signals and is then fed back into the system. Averaging techniques for control-affine systems with highly oscillatory inputs reveal that the closed-loop system is driven, at least approximately, into the directions of certain Lie brackets. A suitable design of the control law ensures that these Lie brackets point into descent directions of the output function. Under suitable assumptions, this method leads to the effect that minima of the output function are practically uniformly asymptotically stable for the closed-loop system. The present document extends and improves this approach in various ways.
One of the novelties is a control strategy that does not only lead to practical asymptotic stability, but in fact to asymptotic and even exponential stability. In this context, we focus on the application of distance-based formation control in autonomous multi-agent system in which only distance measurements are available. This means that the target formations as well as the sensed variables are determined by distances. We propose a fully distributed control law, which only involves distance measurements for each individual agent to stabilize a desired formation shape, while a storage of measured data is not required. The approach is applicable to point agents in the Euclidean space of arbitrary (but finite) dimension. Under the assumption of infinitesimal rigidity of the target formations, we show that the proposed control law induces local uniform asymptotic (and even exponential) stability. A similar statement is also derived for nonholonomic unicycle agents with all-to-all communication. We also show how the findings can be used to solve extremum seeking control problems.
Another contribution is an extremum seeking control law with an adaptive dither signal. We present an output-feedback law that steers a fully actuated control-affine system with general drift vector field to a minimum of the output function. A key novelty of the approach is an adaptive choice of the frequency parameter. In this way, the task of determining a sufficiently large frequency parameter becomes obsolete. The adaptive choice of the frequency parameter also prevents finite escape times in the presence of a drift. The proposed control law does not only lead to convergence into a neighborhood of a minimum, but leads to exact convergence. For the case of an output function with a global minimum and no other critical point, we prove global convergence.
Finally, we present an extremum seeking control law for a class of nonholonomic systems. A detailed averaging analysis reveals that the closed-loop system is driven approximately into descent directions of the output function along Lie brackets of the control vector fields. Those descent directions also originate from an approximation of suitably chosen Lie brackets. This requires a two-fold approximation of Lie brackets on different time scales. The proposed method can lead to practical asymptotic stability even if the control vector fields do not span the entire tangent space. It suffices instead that the tangent space is spanned by the elements in the Lie algebra generated by the control vector fields. This novel feature extends extremum seeking by Lie bracket approximations from the class of fully actuated systems to a larger class of nonholonomic systems. / In dieser Dissertation werden neuartige optimierende Rückkopplungsgesetze für kontroll-affine Systeme mit reell-wertigen zustandsabhängigen Ausgangs- (bzw. Kosten-) funktionen entwickelt und analysiert. Das Ziel ist es zu einem gegebenen kontroll-affinen System ein Ausgangsrückkopplungsgesetz zu erlangen, welches das System im geschlossenen Regelkreis asymptotisch um Zustände stabilisiert bei denen die Ausgangsfunktion einen Minimalwert annimmt. Die Kontrollstrategie soll dabei derart konstruiert sein, dass eine Implementierung nur Echtzeitmessungen des Ausgangswerts erfordert. Zusätzliche Informationen, wie z.B. der aktuelle Systemzustand oder der Gradientenvektor der Ausgangsfunktion, werden nicht als bekannt angenommen. Eine Methode, die alle diese Kritierien erfüllt, bezeichnet man als Extremwertregelungsgesetz. Es wird hierzu ein vor kurzer Zeit etablierter Ansatz in der Extremwertregelung verfolgt, welcher auf der Approximation von Lie-Klammern basiert. Für diesen Zweck wird das gemessene Ausgangssignal mit geeigneten hoch-oszillierenden Signalen moduliert und danach zurück in das System eingespeist. Mittelungstechniken für kontroll-affine Systeme mit hoch-oszillierenden Eingängen enthüllen, dass das System im geschlossenen Regelkreis zumindest näherungsweise in die Richtung von gewissen Lie-Klammern getrieben wird. Eine geeignete Konstruktion des Kontrollgesetzes sichert, dass diese Lie-Klammern in Abstiegsrichtungen der Ausgangsfunktion zeigen. Unter geeigneten Annahmen führt diese Methode zu dem Effekt, dass Minima der Ausgangsfunktion praktisch gleichmäßig asymptotisch stabil für das System im geschlossenen Regelkreis sind. Das vorliegende Dokument erweitert und verbessert diesen Ansatz auf Verschiedene Arten und Weisen.
Eine der Neuerungen ist eine Kontrollstrategie, die nicht nur zu praktischer asymptotischer Stabilität, sondern mehr noch zu asymptotischer Stabilität und sogar exponentieller Stabilität führt. In diesem Zusammenhang wird der Schwerpunkt auf die Anwendung zur abstandsbasierten Formationssteuerung in autonomen Multiagentensystemen gelegt, bei der nur Abstandsmessungen verfügbar sind. Dies bedeutet, dass sowohl die Zielformationen als auch die Messgrößen durch Abstände bestimmt sind. Es wird ein vollständig verteiltes Kontrollgesetz vorgeschlagen, welches lediglich Abstandsmessungen von jedem einzelnen Agenten beinhaltet um eine Formation zu stabilisieren, wobei eine Speicherung von Messdaten nicht erforderlich ist. Der Ansatz ist anwendbar auf Punktagenten im euklidischen Raum von beliebiger (aber endlicher) Dimension. Unter der Annahme von infinitesimaler Starrheit der Zielformationen wird nachgewiesen, dass das vorgeschlagene Steuerungsgesetz lokale gleichmäßige asymptotische (und sogar exponentielle) Stabilität induziert. Eine ähnliche Aussage wird auch für nicht-holonome Einradagenten mit alle-zu-allen-Kommunikation erlangt. Es wird außerdem gezeigt wie diese Erkenntnisse genutzt werden können um Extremwertregelungsprobleme zu lösen.
Ein weiterer Beitrag ist ein Extremwertregelungsgesetz mit einem adaptiven Zittersignal. Es wird ein Ausgangsrückkopplungsgesetz präsentiert, welches ein voll-aktuiertes kontroll-affines System mit allgemeinem Driftvektorfeld zu einem Minimum der Ausgangsfunktion steuert. Eine entscheidende Neuheit des Ansatzes ist eine adaptive Wahl des Frequenzparameters. Auf diesem Weg wird die Aufgabe eine hinreicheind großen Frequenzparamter zu bestimmen hinfällig. Die adaptive Wahl des Frequenzparameters verhindert auch endliche Entweichzeiten in der Gegenwart eines Drifts. Das vorgeschlagene Kontrollgesetz führ nicht nur zu Konvergenz in eine Umgebung eines Minimums, sondern führt zu exakter Konvergenz. Für den Fall einer Ausgangsfunktion mit globalem Minimum und keinem anderen kritischen Punkt wird globale Konvergenz bewiesen.
Schließlich wird ein Extremwertregelungsgesetz für eine Klasse von nicht-holonomen Systemen präsentiert. Eine detaillierte Mittelungsanalyse enthüllt, dass das System im geschlossenen Regelkreis näherungsweise in Abstiegsrichtungen der Ausgangsfunktion entlang von Lie-Klammern der Kontrollvektorfelder getrieben wird. Jene Abstiegsrichtungen stammen ebenso von einer Approximation von geeignet gewählten Lie-Klammern. Dies erfordert eine zweifache Approximation von Lie-Klammern auf verschiedenen Zeitskalen. Die vorgeschlagene Methode kann zu praktischer asymptotischer Stabilität führen selbst wenn die Kontrollvektorfelder nicht den gesamten Tangentialraum aufspannen. Es reicht stattdessen, dass der Tangentialraum durch die Elemente in der Lie-Algebra, welche durch die Kontrollvektorfelder generiert wird, aufgespannt wird. Diese neuartige Eigenschaft erweitert Extremwertregelung durch Lie-Klammer-Approximationen von der Klasse der voll-aktuierten Systeme zu einer größeren Klasse von nicht-holonomen Systemen.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:21177 |
Date | January 2020 |
Creators | Suttner, Raik |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds