The stability of Trp in pure solutions and in parenteral AA formulations was evaluated with regard to typically used manufacturing processes, storage conditions and primary packaging. Therefore, thorough stability studies on Trp solutions were conducted beforehand. The applied stressing method, i.e. steam sterilization by autoclave, are chemically seen relatively mild but showed to be efficient to induce Trp degradation in the presence of oxygen. Subsequent identification, separation and characterization were challenging due to similar substance properties, numerous stereoisomers and pairs of diastereomers found amongst them. However, the identified o-aminoacetophenone compounds, Kyn and NFK, are associated with photo reactivity and have photo-oxidizing properties. Thus, best possible protection from UV-light, together with strict oxygen expulsion, are the most important criteria to impede Trp degradation after autoclaving.
The identification of Trp degradation products was assisted by the compilation of a substance library, which included manifold reported and chemically plausible Trp degradation substances. The substances were classified for priority and their early or late-stage occurrence. The large number of possible substances and stereoisomers was narrowed down with the information retrieved from LC-UV/MS experiments. However, final identification was achieved by the synthesis of proposed substances as references. The following eight substances were characterized as Trp degradation substances: Kyn, NFK and three pairs of diastereomers R,R/R,S DiOia, R,R/R,S Oia and cis/trans PIC. Fig. 33 shows the proposed degradation pathway and demonstrates the close chemical relationship, which may be an explanation for the conversion of some substances into each other during the storage period. The proposed pathway brings together the results of different Trp stability and stressing studies, respectively [89, 94, 97, 98, 103, 133]. To our knowledge, the simultaneous formation of the identified degradation substances has not been reported before and especially not under the stressing conditions applied.
The application of a traditional RP-HPLC method was compared to two developed IP-HPLC methods and a RP-HPLC methods using a modified perfluorinated column. Orthogonal analyses methods and especially the combination of UV and MS detection are necessary in order to indicate potentially undetected degradation substances. Main evaluation criteria were the separation performance, analyses time, reproducibility and feasibility. The best results upon assessment of all Trp degradation products, in both; pure Trp solutions and pharmaceutical formulations, were obtained by a traditional RP-HPLC. The optimized method was validated according to ICH guidelines Q2(R1) and meets the criteria of a stability-indicating HPLC-UV method. The validated method has a sufficient separation performance with an adequate selectivity indicating the Trp degradation substances next to each other and next to other AAs in finished pharmaceutical formulations.
The detailed knowledge of Trp degradation and the method presented may be transferred practically to the pharmaceutical industry processing Trp-containing products. In general, the findings might contribute to the quality management of such pharmaceutical products during
manufacturing and storage. Additionally, the study results provide basic information for the establishment of an impurity consideration following the ICH guidelines Q3B (R2) (impurities in new drug products) for products containing Trp. However, further development of the method applying more sophisticated detectors or more potent HPLC techniques like e.g. UHPLC and the implication of more sensitive (MS) detectors like ToF-MS would be advantageous with regard to economic and practical aspects. / Diese Arbeit dient der Stabilitätsbeurteilung von Tryptophan (Trp) in parenteralen Aminosäurelösungen, insbesondere im Hinblick auf Einflussfaktoren wie der Herstellungsprozess, z.B. der Sterilisationsvorgang, Lagerungsbedingungen, sowie die Art der verwendeten Primärverpackung. Zunächst wurde die Stabilität von reinen Trp-Lösungen untersucht, die mehreren aufeinanderfolgenden Sterilisationszyklen im Autoklav ausgesetzt wurden. Generell stellt der Autoklavierprozess eine Vergleichsweise milde und kontrollierte Art der Hitzebelastung dar. Dabei wurde zwischen Lösungen unterschieden, die Sauerstoff enthielten und Lösungen, in denen der gelöste Sauerstoff mittels Stickstoffgas ausgetrieben wurde und die anschließend luftdicht verschlossen wurden. Es konnte festgestellt werden, dass der Autoklavierprozess, in Anwesenheit von Sauerstoff, zu einem Abbau von Trp führt, welcher sich außerdem auch durch eine Gelbfärbung der Lösungen zeigt. Die Identifizierung und Charakterisierung der Abbauprodukte erwies sich als schwierig aufgrund von sehr ähnlichen Substanzen, die eine Trennung mittels HPLC und die UV-Detektion alleine erschwerten. Die Massenspektroskopie zeigte erst, dass einige Abbauprodukte zeitgleich eluieren und einige isomere Formen vorliegen. Mithilfe von preparativer HPLC und Fragmentierung in der Ionenfalle konnten drei Diastereomeren-Paare gefunden werden, R,R/R,S Oia und DiOia, cis/trans PIC und zwei weitere Substanzen, Kyn und NFK. Die beiden letztgenannten Stoffe haben eine Sonderstellung, denn sie besitzen jeweils ein o-Aminoacetophenon-Grundgerüst anstelle des Indols, und absorbieren dadurch zusätzlich bei Wellenlängen von > 320 nm, und wirken photosensibilisierend, wodurch die Stabilität von Trp (unter Lichteinstrahlung) zusätzlich nachteilig beeinflusst wird. Daraus lässt sich ableiten, dass der Abbau von Trp in Lösungen maßgeblich durch strengen Sauerstoff- und Lichtausschluss verhindert werden kann. Die Abbildung Fig. 33 zeigt schematisch, wie die einzelnen Abbauprodukte möglicherweise entstehen und zusammenhängen könnten. Die Aufstellung der chemischen Zusammenhänge beruht auf den Ergebnissen verschiedener Trp-Stabilitätsstudien und bringt diese auf einen Nenner [89, 94, 97, 98, 103, 133]. Soweit durch die Literaturrecherche bekannt, wurde das zeitgleiche Auftreten aller hier identifizierten Abbauprodukte bislang noch nicht dokumentiert. Insbesondere wurden keine Studien über Stabilitätsprobleme, bedingt durch die Wasserdampf- Sterilisation gefunden. Des Weiteren zeigten die quantitativen Untersuchungen von Lösungen, die eine Woche, ein und drei Jahre (nach einmaligem Autoklavieren) eingelagert wurden, dass die Abbauprodukte nicht linear entstehen und zunehmen, sondern, dass sich deren prozentuale Anteile dynamisch verändern (Kapitel 3.2.).
Für die Identifizierung der Abbauprodukte von Trp war die Zusammenstellung einer Substanz- Bibliothek äußerst hilfreich. Sie beinhaltet chemisch plausible Trp-Abbauprodukte, sowie aus
der Literatur bekannte Abbauprodukte, die durch verschiedenste Stressmethoden hervorgerufen werden. Diese Substanzen wurden nach Plausibilität und Priorität kategorisiert, um ein gezieltes Screening in gestressten (autoklavierten) Trp-Lösungen durchzuführen. Zusammen mit den Ergebnissen der LC-UV/MS Analyse konnte die Auswahl auf einige wenige Abbauprodukte begrenzt werden. Da es sich dabei um Isomere handelte, gelang die Identifizierung letztendlich erst durch die Synthese der in Frage kommenden Stoffe.
Mithilfe der Synthese der Referenzsubstanzen konnte eine HPLC-UV Methode entwickelt, optimiert und nach den ICH Q2(R1) Richtlinien validiert werden, die eine Quantifizierung der Substanzen in reinen Trp-, und in handelsüblichen parenteralen Aminosäurelösungen ermöglicht. Für die validierte Methode wurde als stationäre Phase eine herkömmliche C18- Säule verwendet. Zu Vergleichszwecken wurde eine Methode auf einer Pentafluorophenyl (PFP)-Säule entwickelt und optimiert (Method D 1 und D 2), sowie zwei RP-Methoden mit zwei analogen Ionen-Paar-Reagenzien (Method B und C). Verglichen und beurteilt wurden dabei die Trennleistungen, Analysendauer, Reproduzierbarkeit und die praktische Anwendbarkeit der jeweiligen Methoden. Die besten Ergebnisse wurden aber mittels der traditionellen RP-HPLC erreicht.
Die Ergebnisse könnten für die Herstellung, Lagerung und Beurteilung von Trp-haltigen Lösungen durchaus relevant sein. Eine strenge Kontrolle der Sauerstoffwerte sowie ein kontinuierlicher Lichtschutz während und nach der Verarbeitung sind unverzichtbar. Die Ergebnisse erlauben außerdem ein gezieltes Screening nach Abbauprodukten, bzw. „Markern“. Die Erstellung von Beurteilungen, wie es z.B in den ICH Q3B(R2) Richtlinien gefordert ist, wird erleichtert, da die Identität bestimmt wurde und eine validierte Quantifizierungsmethode entwickelt wurde. Die Methode könnte für industrielle Zwecke noch weiter optimiert werden, indem z.B. eine UHPLC entwickelt wird oder sensiblere Detektoren, wie z.B. ein ToF- Massendetektor, verwendet werden. Letztendlich sollte allerdings von der Arzneibuchmethode abgegrenzt werden, die Verunreinigungen aus dem Trp-Herstellungsprozess erfasst (1,1´ Ethyliden(bis)Trp). Die hier entwickelte Methode erfasst die Abbauprodukte von Trp in reinen Trp und in Trp-haltigen Aminosäurelösungen, die typischerweise durch Fehler bei der Herstellung oder den Autoklavierprozess hervorgerufen werden können.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:19982 |
Date | January 2020 |
Creators | Unger, Nina |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-sa/4.0/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0045 seconds