This thesis focuses on the parameter stability of additive normal tempered stable processes when calibrating a volatility surface. The studied processes arise as a generalization of Lévy normal tempered stable processes, and their main characteristic are their time-dependent parameters. The theoretical background of the subject is presented, where its construction is discussed taking as a starting point the definition of Lévy processes. The implementation of an option valuation model using Fourier techniques and the calibration process of the model are described. The thesis analyzes the parameter stability of the model when it calibrates the volatility surface of a market index (EURO STOXX 50) during three time spans. The time spans consist of the periods from Dec 2016 to Dec 2017 (after the Brexit and the US presidential elections), from Nov 2019 to Nov 2020 (during the pandemic caused by COVID-19) and a more recent time period, April 2023. The findings contribute to the understanding of the model itself and the behavior of the parameters under particular economic conditions.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-62873 |
Date | January 2023 |
Creators | Alcantara Martinez, Eduardo Alberto |
Publisher | Mälardalens universitet, Akademin för utbildning, kultur och kommunikation |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds