With the evolution of GPU performance, the interest of using AI for all kinds of purposes has risen. Companies today put a great amount of resources to find new ways of using AI to increase the value of their products or automating processes. An area in the wood industry where AI is widely used and studied is in defect detection. In this thesis, the combination of using AI and hyperspectral images is studied and evaluated in the case of segmenting defects in hardwood with a U- Net network structure. The performance is compared to another known method usually used when dealing with high-dimensional data: PLS-DA. This thesis also compares the use of RGB image data in combination with AI, to further analyze the usefulness that the hyperspectral data provide. The results showed signs of improvement when using hyperspectral images com- pared to RGB images when detecting blue stain and red heartwood defects. De- tection of the defects rot and knots did however show no sign of improvements. Due to the annotations being more accurate in the RGB data, the results from the hyperspectral data-fed networks would suggest that blue stain and red heartwood could be of interest regarding further investigation. Computational performance is shown to vary across the different reduction meth- ods, and the results from this thesis provides some insight that might aid in the reasoning regarding how to choose an appropriate reduction method.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-204577 |
Date | January 2024 |
Creators | Ytterberg, Kalle |
Publisher | Linköpings universitet, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds