Return to search

Dissipative State Engineering in Quantum Many-Body Systems

Quantum systems that are in weak contact with a thermal heat bath will ultimately relax to an equilibrium state which is characterized by the temperature of the environment only. This state is independent of the specific properties of the bath and of how it is coupled to the system. This changes completely, when the system is additionally driven. Such a driven-dissipative situation can emerge, for example, due to an additional time-periodic modulation of the system, or when it is brought into contact with a second bath of different temperature. Then, the system will run into a well-defined nonequilibrium steady state. This state, however, will depend on the very details of the environment and its coupling to the system.

We study whether this freedom can be used to engineer interesting properties of quantum systems, which are not found in their equilibrium states, i.e. in the absence of a drive. We focus on bosonic quantum many-body systems. We investigate when far-from-equilibrium ideal gases feature Bose condensation in a group of single-particle states, as opposed to situations where Bose condensation is completely absent in the nonequilibrium steady state. We show that Bose condensation can be induced in a finite one-dimensional ideal gas by the competition of two heat baths whose temperatures both lie well above the equilibrium condensation temperature.
This setup also allows to engineer condensation in excited single-particle states. We discuss first ideas to study similar setups in weakly interacting Bose gases. Describing the microscopic dynamics of interacting many-body systems coupled to thermal baths is extremely challenging, due to the fact that generally the full many-body spectrum is inaccessible. Using ideas from semiclassics, we develop an approximation to the dynamics that yields good results at high and intermediate bath temperatures.

We also investigate the transient dynamics of driven-dissipative quantum systems. Our studies are motivated by a result that is well known for isolated quantum systems: for a system whose dynamics is generated by a time-periodic Hamiltonian, the stroboscopic dynamics (observed at integer multiples of the driving period) can always be understood as if it would stem from a time-independent Hamiltonian, the Floquet Hamiltonian. For open quantum systems in contact with an environment, we ask if a similar mapping to an effective generator, the Floquet Lindbladian, is always possible. For a simple qubit model we show that there are two extended parameter regions, one in which the Floquet Lindbladian exists, and one in which it does not. We discuss problems of analytical expansions that can give rise to this Floquet Lindbladian and discuss how we can interpret the region where it does not exist.
These results are important for dissipative Floquet engineering and open up new perspectives for the control of open quantum systems via time-periodic driving.:1. Introduction
2. Master equation for open quantum systems
3. Existence of the Floquet Lindbladian
4. Number of Bose-selected modes in driven-dissipative ideal Bose gases
5. High-temperature nonequilibrium Bose condensation induced by a hot needle
6. Weakly interacting Bose gases far from thermal equilibrium
7. Summary and outlook / Quantensysteme, die in schwacher Wechselwirkung mit einem thermischen Wärmebad stehen, relaxieren stets in einen Gleichgewichtszustand, welcher allein durch die Temperatur der Umgebung beschrieben ist. Dieser Zustand ist unabhängig von den spezifischen Eigenschaften des Bades, und davon wie dieses an das System gekoppelt ist. Dies ändert sich, wenn das System zusätzlich angetrieben wird. Ein solches getrieben-dissipatives Szenario kann beispielsweise durch einen zusätzlichen zeitperiodischen Antrieb entstehen, oder wenn das System mit einem zweiten Bad unterschiedlicher Temperatur in Kontakt gebracht wird. In diesem Fall läuft das System in einen wohldefinierten stationären Nichtgleichgewichtszustand. Dieser Zustand hängt jedoch von den Details der Umgebung, und davon wie diese an das System gekoppelt ist, ab.

Es wird untersucht ob diese Freiheit genutzt werden kann um interessante Eigenschaften von Quantensystemen zu konstruieren, die in deren Gleichgewichtszuständen, d.h. in Abwesenheit des Antriebs, nicht zu finden sind. Der Fokus der Arbeit liegt auf bosonischen Quantenvielteilchensystemen. Es wird ergründet unter welchen Bedingungen ideale Gase fernab des thermischen Gleichgewichts Bose Kondensation in einer Gruppe von Einteilchenzuständen aufweisen, im Gegensatz zu Szenarien in denen überhaupt keine Bose Kondensation im stationären Nichtgleichgewichtszustand auftritt. Weiterhin wird gezeigt, dass Bose Kondensation in einem eindimensionalen idealen Gas durch das Wechselspiel zweier Wärmebäder induziert werden kann. Die Temperatur beider Bäder liegt dabei weit über der Kondensationstemperatur des Gleichgewichts. Diese Anordnung erlaubt außerdem kontrollierte Kondensation in angeregten Einteilchenzuständen. Erste Ideen für das theoretische Studium ähnlicher Anordnungen für schwach wechselwirkende Bosegase werden diskutiert. Eine Beschreibung der mikroskopischen Dynamik wechselwirkender Vielteilchensysteme ist extrem anspruchsvoll, da typischerweise das volle Vielteilchenspektrum unzugänglich ist. Unter Zurhilfenahme semiklassischer Ideen wird eine Näherung der Dynamik entwickelt, welche eine gute Beschreibung für hohe und intermediäre Temperaturen liefert.

Weiterhin wird die transiente Dynamik getrieben-dissipativer Quantensysteme untersucht. Die Motivation bietet ein bekanntes Resultat für abgeschlossene Quantensysteme: Für ein System, dessen Dynamik durch einen zeitperiodischen Hamiltonoperator bestimmt ist, kann die stroboskopische Dynamik (unter Beobachtung zu Zeiten, die Vielfache der Antriebsperiode sind) immer so verstanden werden als würde sie von einem zeitunabhängigen Hamiltonoperator, dem Floquet Hamiltonian, induziert. Für offene Quantensysteme im Kontakt mit einer Umgebung wird untersucht ob eine ähnliche Abbildung auf einen effektiven Generator, den Floquet Lindbladian, existiert. Für ein einfaches Qubit Modell wird gezeigt, dass es zwei ausgedehnte Parameterregionen gibt, eine in welcher der Floquet Lindbladian existiert und eine weitere in der dieser nicht existiert. Es werden Probleme von analytischen Entwicklungen des Floquet Lindbladian diskutiert. Auch wird eine Interpretation der Region gegeben, in der dieser nicht existiert.
Diese Resultate sind maßgeblich für dissipatives Floquetengineering und eröffnen neue Blickwinkel auf die zeitperiodische Kontrolle offener Quantensysteme.:1. Introduction
2. Master equation for open quantum systems
3. Existence of the Floquet Lindbladian
4. Number of Bose-selected modes in driven-dissipative ideal Bose gases
5. High-temperature nonequilibrium Bose condensation induced by a hot needle
6. Weakly interacting Bose gases far from thermal equilibrium
7. Summary and outlook

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35357
Date12 September 2019
CreatorsSchnell, Alexander
ContributorsEckardt, André, Ketzmerick, Roland, Fleischhauer, Michael, Technische Universität Dresden, Max-Planck-Institut für Physik komplexer Systeme
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.1103/PhysRevLett.119.140602, 10.1103/PhysRevE.97.032136

Page generated in 0.0032 seconds