One of the major drawbacks of using stem cell therapy to treat muscular dystrophies is the challenge of isolating sufficient numbers of suitable precursor cells for transplantation. As such, a deeper understanding of the molecular mechanisms involved during muscle development, which would increase the proportion of embryonic stem cells that can differentiate into skeletal myocytes, is essential. In conditional SOX7-/- mice, we observed that the loss of SOX7 in satellite cells resulted in poor differentiation and fusion. In vivo, we observed fewer Pax7+ satellite cells in the mice lacking SOX7 as well as smaller muscle fibers. RT-qPCR data also revealed that Pax7, MRF and MHC3 transcript levels were down-regulated in SOX7 knockdown mice. Surprisingly, when SOX7 was over-expressed in embryonic stem cells, we found that there was a defect in making muscle precursor cells, specifically a failure to activate Pax7 expression. Taken together, these results suggest that SOX7 expression is required for the proper regulation of skeletal myogenesis.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/31746 |
Date | January 2014 |
Creators | Rajgara, Rashida |
Contributors | Skerjanc, Ilona |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.002 seconds